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Numerical accuracy and efficiency of several discontinuous high-order methods, including
the quadrature-based discontinuous Galerkin (QDG), nodal discontinuous Galerkin (NDG),
spectral difference (SD) and flux reconstruction/correction procedure via reconstruction
(FR/CPR), for the conservation laws are analyzed and compared on both linear and curved
quadrilateral elements. On linear elements, all the above schemes are one-dimensional in
each natural coordinate direction. However, on curved elements, not all schemes can be
reduced to a one-dimensional form, although the SD and CPR formulations remain one-
dimensional by design. The efficiency and accuracy of various formulations are compared
on highly skewed curved elements. Several benchmark problems are simulated to further
evaluate the performance of these schemes.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Adaptive high-order (order of accuracy �3) methods have received considerable interest in the computational fluid dy-
namics (CFD) community recently due to their potential of delivering higher accuracy with lower computational cost than
the low-order methods for problems involving complex physics and geometry, such as aero-acoustic noise prediction and
vortex dominated flows. Readers are referred to several books [1–3] and reviews on these methods [4,5].

The most popular high-order method for compressible flow simulations is arguably the discontinuous Galerkin (DG)
method. It was first introduced by Reed and Hill [6] for neutron transport equations in 1973 and then developed by
Cockburn and Shu [7,8] and Cockburn et al. [9] for hyperbolic conservation laws. Bassi and Rebay [10,11] applied the
DG discretization to the Euler and Navier–Stokes equations, and emphasized the importance of the proper treatment of the
curved boundaries. Some comprehensive reviews on the DG development for both hyperbolic and elliptic problems can be
found in [12,13]. Depending on how the degrees-of-freedom (DOFs) are chosen, various DG implementations have different
numerical properties and efficiencies. In the most straightforward implementation of the DG approach, the Gauss quadra-
ture is used to compute the surface and volume integrals in the weak formulation. We will call this DG implementation
quadrature-based DG or QDG. A more efficient implementation, the nodal DG (NDG), was developed by Hesthaven and War-
burton [2]. The NDG approach avoids the use of quadrature by expanding the (nonlinear) flux on the same Lagrange basis
employed by the solution. This approach was also explored in the quadrature-free implementation of DG by Atkins and
Shu [14]. Generally speaking, QDG is almost always more expensive than NDG due to the numerical quadrature and extra
interpolation. For linear conservation laws, QDG and NDG are identical in accuracy. For nonlinear conservation laws, QDG is
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more accurate as NDG may run into problems associated with aliasing errors. Note that the DG methods on quadrilateral
elements are also referred as DG spectral element methods [15–18].

In order to avoid the explicit numerical integrals, some finite-difference-like discontinuous formulations have been de-
veloped. One successful high-order approach of this kind is the staggered-grid (SG) multi-domain spectral method [19] or
the spectral difference (SD) method [20,21]. This method directly reconstructs a flux polynomial based on fluxes on a given
nodal set called flux points. Then the derivatives of the flux polynomial are used to update the solutions at the solution
points. On quadrilateral or hexahedral elements, the SD method is one-dimensional by design, even for high-order ele-
ments. This is significant, as the computational cost is much less than that of the DG approaches in multiple dimensions.
Later, it was found that the computational cost of SD can be further decreased as Huynh [22] and Van den Abeele et al.
[23] confirmed that the SD method only depends on the location of the flux points, and the staggered-grid configuration,
i.e. staggered distribution of solution points and flux points, is not necessary. This suggests that computation efficiency can
be further improved if the solution points coincide with the flux points [23].

In 2007, Huynh [22] introduced the flux reconstruction (FR) approach for one-dimensional conservation law. The FR
approach shares with SD the philosophy of solving the differential form of the equation. The key difference, however, is
that FR allows the flux polynomial to be reconstructed by a procedure significantly more general than the interpolation
procedure used by SD. Depending on how the flux polynomial is defined, the FR approach unifies many existing methods
such as the DG, SD and SV [24] methods. Moreover, several new schemes with favorable properties are discovered in the
FR family. Later, Huynh [25] extended the FR framework to handle the diffusion equation, which laid the foundation for
the extension to the Navier–Stokes equations. In 2009, Wang and Gao [26,27] extended the flux reconstruction approach
to simplex elements under the lifting collocation penalty (LCP) framework. Since the FR and LCP approaches result in the
same final formulation, Huynh and Wang renamed FR and LCP schemes to ‘correction procedure via reconstruction’ or CPR
schemes. Further work on the FR/CPR method can be found in [28,29,3,30–33]. A recently developed sparse line-based DG
[34] on quadrilateral elements is closely related to these formulations.

In the present study, we evaluate the efficiency, accuracy and robustness of the QDG, NDG, SD and the CPR formulations
on quadrilateral elements. Comparison of these formulations on triangular and other types of elements remains to be carried
out. Here, accuracy and efficiency are tightly coupled. We measure the relative efficiency based on a given error threshold,
following the practice used in the 1st International Workshop on High-Order CFD Methods [35].

The paper is organized as follows. For completeness, we briefly review DG, SD and CPR methods on linear elements in
Section 2. Analyses of several schemes on curved elements and the modification of these schemes to enhance accuracy and
efficiency are presented in Section 3. In Section 4, the implementation procedures for DG, SD and CPR methods are given
and some important assumptions for different implementations are clarified. The comparisons of the algorithm accuracy
and computational efficiency for the linear and Euler equations on both linear and high-order elements are presented in
Section 5. Finally, conclusions are summarized in Section 6.

2. Reviews of discontinuous high-order methods on linear elements

Consider the following conservation law,

∂ Q

∂t
+ ∇ · F (Q ) = 0 (1)

defined on Ω × [0, T ] with spatial domain Ω bounded by ∂Ω , where Q is the vector of conservative variables, and F =
( f , g) is the flux vector, which can be a linear or nonlinear function of Q .

To achieve an efficient implementation, the conservation law is usually transformed from the physical domain (x, y) into
the computational domain (ξ,η). Define the area vectors

a1 = (yη,−xη), a2 = (−yξ , xξ ), (2)

and the volume

τ = xξ yη − xη yξ , (3)

where xξ , xη , yξ and yη are metrics of the coordinate transformation. Then the transformed equation of Eq. (1) takes the
following form

∂ Q̃

∂t
+ ∂ f̃

∂ξ
+ ∂ g̃

∂η
= ∂ Q̃

∂t
+

2∑
l=1

∂ F̃ l

∂ξ l
= 0, (4)

where

Q̃ = τ Q ,
(

F̃ 1, F̃ 2) = ( f̃ , g̃) = (
a1 · F ,a2 · F

)
,

(
ξ1, ξ2) = (ξ,η). (5)

It is assumed that the physical domain Ω is partitioned into N non-overlapping elements Ω i . Note that Eq. (1) holds
on each Ω i . When Ω i is transformed into the corresponding standard element Ωs , Eq. (4) holds on Ωs . Also note that
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