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An Algebraic Multiscale Solver (AMS) for the pressure equations arising from incompressible
flow in heterogeneous porous media is described. In addition to the fine-scale system of
equations, AMS requires information about the superimposed multiscale (dual and primal)
coarse grids. AMS employs a global solver only at the coarse scale and allows for several
types of local preconditioners at the fine scale. The convergence properties of AMS are
studied for various combinations of global and local stages. These include MultiScale
Finite-Element (MSFE) and MultiScale Finite-Volume (MSFV) methods as the global stage,
and Correction Functions (CF), Block Incomplete Lower–Upper factorization (BILU), and
ILU as local stages. The performance of the different preconditioning options is analyzed
for a wide range of challenging test cases. The best overall performance is obtained by
combining MSFE and ILU as the global and local preconditioners, respectively, followed
by MSFV to ensure local mass conservation. Comparison between AMS and a widely used
Algebraic MultiGrid (AMG) solver [1] indicates that AMS is quite efficient. A very important
advantage of AMS is that a conservative fine-scale velocity can be constructed after any
MSFV stage.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Numerical simulation of multiphase flow in large-scale heterogeneous reservoirs is computationally demanding. To re-
duce the computational complexity, several MultiScale (MS) methods have been developed [2–10]. In MS methods, the global
fine-scale problem is decomposed into large numbers of local problems. Basis functions, which are numerical solutions of
local problems, are used to construct accurate coarse-scale quantities. Once the coarse-scale system is solved, the solution
is mapped onto the fine scale using the basis functions. Among the proposed multiscale methods, the Mixed MultiScale
Finite-Element (MMSFE) [6,11,5,8] and the MultiScale Finite Volume (MSFV) [7] methods provide locally mass-conservative
solutions, which is a crucial property for solving coupled flow and transport problems.

The MSFV method employs locally computed basis functions to construct the coarse-scale system in a finite-volume
framework. To obtain a locally conservative velocity field at the fine scale, additional local Neumann problems are con-
structed over the primal coarse control volumes. Recent developments of the MSFV method include incorporating the effects
of compressibility [12,13], gravity and capillary [14], complex wells [15,16], faults [17], fractures [18], three-phase [19] and
compositional displacements [20]. Furthermore, the efficiency of the method has been enhanced by adaptive computation
of the basis functions for multiphase, time-dependent displacement problems [21–24].
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Fig. 1. Primal (bold black) and dual (dashed blue) coarse cells. Fine-cells belonging to a coarse cell (control volume) are shown in green. Fine-cells that
belong to a dual coarse cell are highlighted in light orange. The red circles denote the coarse nodes (vertices). (For interpretation of the references to color
in this figure, the reader is referred to the web version of this article.)

For a wide range of heterogeneous test cases, the MSFV results are shown to be in good agreement with reference
fine-scale solutions. However, the accuracy of MSFV method suffers from the presence of extreme permeability contrasts
(e.g., SPE 10 bottom section [25]) or highly anisotropic problems (e.g., large grid aspect ratios) [26]. To overcome these
limitations, the iterative MSFV (i-MSFV) method was introduced [27], where the MSFV errors were systematically reduced
with the help of locally computed Correction Functions (CF). The i-MSFV had weak convergence performance for highly
heterogeneous and anisotropic problems [28]. The convergence rate was improved significantly by using the MSFE operator
(i-MSFE) [29,30]. The benefit of the MSFV operator is that a mass-conservative solution is obtained. Thus, MSFV can be
employed at the end of the iterative process to ensure that the approximate solution is conservative.

Both the original (single-pass) and iterative multiscale methods can be formulated in an algebraic manner [13,30]. The
algebraic formulation reduces the implementation complexity, especially for problems defined on unstructured grids, and
it allows for easy integration of the method into existing reservoir simulators. The Two-Stage Algebraic Multiscale Solver
(TAMS) [30] consists of local and global stages. In the global stage, low frequency errors are resolved by a multiscale
preconditioner. In the local stage, high frequency errors are resolved using a Block ILU with zero fill-in (BILU) [31] local
solver. However, CF was not incorporated into TAMS, and the exact role of CF in the context of multi-stage preconditioning
had not been analyzed. In addition, the best choices among the variety of possible local and global stages have not been
thoroughly investigated.

In this paper, a general iterative Algebraic Multiscale Solver (AMS) is described. AMS allows for MSFV, or MSFE, as global
operators with different types of local boundary conditions, and it allows for many local fine-scale solvers, e.g., BILU and
Line-Relaxation (LR) [32]. We show that the CF is an independent local preconditioning stage aimed at resolving high-
frequency errors. The effects of the CF local stage on the AMS convergence rate and the overall computational efficiency
for several heterogeneous problems are analyzed. To obtain the best combination of methods, we provide systematic per-
formance tests considering different global (MSFV and MSFE) and local (BILU, CF, ILU) stages with different local boundary
conditions. Then, the computational efficiency of AMS is compared with an advanced algebraic multigrid solver, SAMG,
developed at Fraunhofer SCAI [1].

The paper is organized as follows. First, a general Algebraic Multiscale Solver (AMS) for heterogeneous elliptic problems
is developed. Second, the effects of CF are analyzed. Then, numerical results are presented. The conclusions are given in the
final section.

2. Algebraic Multiscale Solver (AMS)

In this section, the original MSFV method is reviewed briefly. Then, the Algebraic Multiscale Solver (AMS) is described.

2.1. MultiScale Finite Volume (MSFV) method

The pressure equation for single-phase incompressible flow can be written as

∇ · (λ · ∇p) = ∇ · (ρgλ · ∇z) + q̃, (1)

where λ is the positive-definite mobility tensor, q̃ represents source terms, g is the gravitational acceleration acting in the
∇z direction, and ρ is the density.

The MSFV grid consists of two sets of overlapping coarse grids, namely primal and dual coarse grids, superimposed on
the given fine grid (Fig. 1). There are NC primal coarse cells (control volumes), ΩC

i (i ∈ {1, . . . , NC }), and ND dual-coarse
cells (local domains), ΩD

j ( j ∈ {1, . . . , ND}).



Download English Version:

https://daneshyari.com/en/article/6932943

Download Persian Version:

https://daneshyari.com/article/6932943

Daneshyari.com

https://daneshyari.com/en/article/6932943
https://daneshyari.com/article/6932943
https://daneshyari.com

