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We model liquid–gas flows with cavitation by a variant of the six-equation single-velocity
two-phase model with stiff mechanical relaxation of Saurel–Petitpas–Berry (Saurel et al.,
2009) [9]. In our approach we employ phasic total energy equations instead of the phasic
internal energy equations of the classical six-equation system. This alternative formulation
allows us to easily design a simple numerical method that ensures consistency with
mixture total energy conservation at the discrete level and agreement of the relaxed
pressure at equilibrium with the correct mixture equation of state. Temperature and Gibbs
free energy exchange terms are included in the equations as relaxation terms to model heat
and mass transfer and hence liquid–vapor transition. The algorithm uses a high-resolution
wave propagation method for the numerical approximation of the homogeneous hyperbolic
portion of the model. In two dimensions a fully-discretized scheme based on a hybrid
HLLC/Roe Riemann solver is employed. Thermo-chemical terms are handled numerically via
a stiff relaxation solver that forces thermodynamic equilibrium at liquid–vapor interfaces
under metastable conditions. We present numerical results of sample tests in one and
two space dimensions that show the ability of the proposed model to describe cavitation
mechanisms and evaporation wave dynamics.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The modeling of cavitating flows is relevant in numerous areas of engineering, from naval and submarine systems design
to aerospace and nuclear power plants technologies. Cavitating fluids are multiphase mixtures that often involve complex
hydrodynamic and thermodynamic processes: liquid–vapor phase transition, dynamical creation of interfaces, vapor struc-
tures collapse, and associated shock wave formation and interaction (cf. [1–3]). As a further reason of complexity, in many
industrial applications these flows occur in irregular geometries and they have a multi-dimensional character.

Extensive work has been dedicated in the past decades to the simulation of cavitating flows and liquid–vapor flows
with phase change, see for instance [4–15] and the references therein. Among the different modeling approaches, the class
of hyperbolic compressible multiphase models stemming from the original model of Baer–Nunziato [16] has shown great
capabilities in describing the complex wave patterns and thermodynamic mechanisms of cavitation. A first essential feature

* Corresponding author. Tel.: +33 1 69 31 98 19; fax: +33 1 69 31 99 97.
E-mail addresses: marica.pelanti@ensta-paristech.fr (M. Pelanti), shyue@ntu.edu.tw (K.-M. Shyue).

0021-9991/$ – see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jcp.2013.12.003

http://dx.doi.org/10.1016/j.jcp.2013.12.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:marica.pelanti@ensta-paristech.fr
mailto:shyue@ntu.edu.tw
http://dx.doi.org/10.1016/j.jcp.2013.12.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2013.12.003&domain=pdf


332 M. Pelanti, K.-M. Shyue / Journal of Computational Physics 259 (2014) 331–357

of these models is that compressibility is taken into account for all phases, vapor as well as liquid. This is fundamental
to correctly capture wave propagation phenomena and acoustic perturbations, and it is particularly crucial when liquid–
vapor transition occurs [8]. Another important property is that these models can retain temperature and Gibbs free energy
non-equilibrium effects, thus they are able to capture metastable states as well as evaporation fronts, when heat and mass
transfer processes are included in the physical description through thermal and chemical relaxation source terms.

There exist various formulations of compressible temperature non-equilibrium multiphase flow models, depending on
the assumptions on mechanical and kinetic phase equilibrium. In choosing a particular model, one has to find a good
compromise between the accuracy of the description of the physical phenomena and the ability of conceiving robust and
efficient numerical methods. In the present work, we are interested in the hyperbolic single-velocity six-equation model
proposed by Saurel, Petitpas and Berry in [9] for compressible two-phase flows, see also Zein et al. [17]. This model consists
of an advection equation for the volume fraction of one phase, mass and internal energy equations for each phase, and a
mixture momentum equation. The six-equation model assumes instantaneous velocity equilibrium between the two phases,
but it retains mechanical, thermal and chemical non-equilibrium effects. In the limit of instantaneous pressure relaxation
the model reduces to the well known compressible two-phase flow model of Kapila et al. [18]. Nonetheless, as emphasized
in [9], and as we briefly recall in Section 2, numerically it is more advantageous to solve the six-equation system with stiff
mechanical relaxation rather than the Kapila et al. [18] pressure-equilibrium five-equation model system.

The single-velocity six-equation two-phase model with stiff pressure relaxation was employed in [9] for applications
to interface problems and mechanical cavitation processes (that is cavitation with no phase transition). It was later used
by Zein et al. in [17] to simulate liquid–vapor transition in metastable liquids. One difficulty of the numerical algorithm
illustrated in the latter work, as noted by the authors, is that it may require a very small time step for stability for some
expansion problems with phase transition, due to the stiffness of the chemical relaxation terms. Only one-dimensional
numerical results are presented by the authors in [17].

The aim of the present paper is to conceive a new multiphase flow computational model on the basis of the six-equation
system of [9] that could deal efficiently with interfaces, cavitation and evaporation waves, while retaining simplicity and
time-affordability. The key idea of our approach is to employ an alternative mathematical formulation of the standard
six-equation model system [9] in the numerical discretization. Rather than using the two phasic internal energy equations
of the classical model, in our algorithm we employ two equations for the phasic total energies. Mathematically, these two
model systems are equivalent. The present model, however, is numerically advantageous with respect to the standard one,
since it allows us to easily design a simple numerical method that ensures important consistency properties with mixture
total energy conservation and with the mixture thermodynamic state. More specifically, first, we are able to automatically
recover a conservative discrete form of the mixture total energy equation, whereas the classical six-equation model system
needs to be augmented with an additional conservation law for the mixture total energy to correct the thermodynamic
state [9,17]. Secondly, as a consequence of the mixture total energy conservation consistency property, we are able to
easily ensure agreement of the relaxed pressure at equilibrium with the correct mixture equation of state for the full
six-equation two-phase model that includes mechanical and thermo-chemical stiff relaxation effects. Relaxation terms are
therefore efficiently handled.

To numerically solve the proposed two-phase model with pressure, temperature, and Gibbs free energy relaxation, we
employ a simple fractional step approach that consists of the homogeneous hyperbolic system solution step, and a sequence
of steps thereafter to solve systems of ordinary differential equations containing the relaxation source terms. A high-
resolution wave propagation method based on Riemann solvers (HLLC and Roe) (cf. [19]) is employed for the numerical
solution of the homogeneous hyperbolic system. The algorithm is easily implemented in the framework of the CLAWPACK

software package [20]. For solving the ordinary differential equations with stiff relaxation sources, we have devised robust
solvers that drive the mixture to the desired equilibrium conditions in a sequence of relaxation processes (cf. [21,10,8,17,
14]). In this procedure, similar to [8,22], thermodynamic equilibrium is forced at liquid–vapor interfaces under metastable
conditions. Numerically for this task we employ an idea similar to [14,23] that uses the thermodynamic equilibrium condi-
tions to reduce the solution of the ODEs relaxation problem to the solution of a simple system of algebraic equations for
the equilibrium state variables.

This paper is organized as follows. In Section 2.1, we begin by recalling the six-equation single-velocity model with stiff
mechanical relaxation of Saurel–Petitpas–Berry [9] for compressible two-phase flows. We then propose in Section 2.2 a vari-
ant of this model system, by employing phasic total energy equations in the mathematical formulation instead of the phasic
internal energy equations of the classical approach. The extended model that includes thermal and chemical relaxation
terms to model heat and mass transfer is described in Section 2.3. In Section 3 we illustrate the numerical method to solve
the basic model system with mechanical relaxation only. In this section we also discuss the mixture-energy-consistency
property of the algorithm. The numerical treatment of temperature and Gibbs free energy relaxation source terms is de-
scribed in Section 4. Finally, in Section 5 we present a selection of numerical results obtained by employing the proposed
method with and without activation of heat and mass transfer.
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