Journal of Computational Physics 258 (2014) 47-72

Contents lists available at ScienceDirect E‘Eﬁmmm
CS,

Journal of Computational Physics

www.elsevier.com/locate/jcp

A gradient augmented level set method for unstructured grids @CmssMark

Arne Backmann *, Magnus Vartdal

University of Oslo (UiO), Department of Mathematics, PO Box 1053, Blindern, NO-0316 Oslo, Norway

ARTICLE INFO ABSTRACT
Artic{e history: We present and test a gradient augmented level set method for unstructured grids, which
Received 4 October 2012 has been designed to allow for easy integration in parallel flow solvers. The means to this

Received in revised form 26 June 2013
Accepted 14 October 2013
Available online 21 October 2013

end is a Hermite formulation, where the gradient is stored and advected as an independent
variable, along with the level set function. The method uses narrow-band storage in
conjunction with a Fast Marching Method, which is also designed to take advantage of the

Keywords: gradient augmentation. We demonstrate through standard passive advection test cases that
Level set the proposed method is able to compute interface motion with performance comparable
Unstructured grid to popular high-performing methods on structured grids.
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1. Introduction

Modern fluid simulation of practical problems usually involve complex geometries, variable spatial resolution and parallel
computing. The introduction of phase interfaces adds to the complexity. Whereas there exists an abundance of methods
and algorithms to track fluid interfaces, much fewer possess the generality that allow them to be implemented with an
unstructured, parallel solver.

Volume Of Fluid (VOF) methods and Level Set methods are two of the most popular interface capturing approaches used
on stationary grids. In the original VOF method [1], the volume fraction of fluid in the computational cell is used to identify
and track the surface, ideally conserving mass. However, VOF encounters a common problem: a characteristic of a fluid sur-
face or interface is that it represents a discontinuity, which does not readily lend itself to polynomial interpolation schemes.
While several variants of shock capturing schemes exist, these introduce significant numerical diffusion when applied to
discontinuities. Thus, in [1], the surface is reconstructed in a geometric fashion, where chunks of fluid are transfered from
one cell to the other. To maintain a sharp interface, additional ad-hoc procedures are introduced after advection. This is a
relatively crude process, and it is particularly challenging on unstructured grids. Thus, while conserving mass, VOF has in
many cases difficulties with accurately representing the motion of an interface; see [2] for a modern example.

Level set methods, on the other hand, convert the scalar function, in which the interface is embedded, to a form more
suitable for polynomial interpolation schemes. This is done through the solution of a reinitialization equation - most often
an eikonal equation - which converts the level set function into a signed distance function. Since the distance to the
interface is not a conserved quantity, level set methods using this approach do not conserve mass exactly. While the signed
distance function represents the interface in a relatively smooth manner, numerical diffusion is still present, and this often
causes unacceptably high local mass loss or gain, especially in regions of high curvature.

Several strategies exist to counteract this. The conceptually simplest is to increase the resolution of the grid near the
interface, either through adaptive mesh refinement [3], or a finer, separate background grid [4]. Another approach is to
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increase the numerical accuracy. The WENO-type high-order, shock-capturing schemes [5] are popular for structured grids.
Implementation on unstructured grids is however more complicated [6], and a general drawback of WENO schemes is that
the numerical stencils are rather large, thus complicating data transfer in parallel settings.

A simpler approach is the use of Lagrangian particles to track the interface. The Particle Level Set method [7] is one
such method, where particles of finite radius are placed tangent to the interface to correct numerical error in the Eulerian
solution. By using Lagrangian interface tracking in conjunction with the level set method, topology changes may be simpli-
fied as compared to a purely Lagrangian method. While the original Particle Level Set method used a WENO scheme for the
grid-based advection, it was discovered in [8] that since the accuracy mainly depends on the particle correction, a first order
semi-Lagrangian scheme for the grid-based quantities is sufficient. Lagrangian augmentation of the interface advection has
many attractive features. But like all of the discussed methods, it introduces an additional layer of complexity. Moreover,
as the interface is stretched or compressed, so are the particles. This necessitates particle seeding or deletion. When seeding
new particles, some kind of interpolant must be used to approximate the interface position from the grid data, and the
accuracy of the interface reconstruction is limited by this interpolant. Due to the relatively limited information contained
in each particle (position, radius and sign), and the fact that the corrections are made on a per-particle basis, a relatively
dense particle distribution is required. In [7], a default of 64 particles per cell per phase was used in 3D. Particles were
seeded in a band that spanned around three cells from the interface, yielding a large number of particles. In [9], gradient
and curvature information were also embedded in Lagrangian particles and used in conjunction with a level set method.
The information transfer from particle to grid was however done by a first order Taylor expansion only, and it remains
unresolved how reseeding and topology change should be treated in a robust manner.

If local mass conservation is a pressing issue, the signed distance function may be replaced by a smeared-out approx-
imation of the volume fraction [10,11], however, this may decrease the accuracy of the numerical schemes. Global mass
conservation can always be assured by iterating a scheme that moves the interface in the normal direction [12]. This may
be an acceptable approach if the local mass loss/gain is low, but over longer periods of time leads to unphysical results.

As mentioned above, high-order schemes can reduce the mass loss, but these often require large stencils. Cubic Hermite
interpolation is one of the exceptions - all data required to construct the interpolant is contained within a single cell.
The gradients may be obtained by a transport equation, which is derived by taking the gradient of the scalar advection
equation, or its discrete analogue. While maintaining compact stencils, this also introduces additional effective resolution,
at the expense of increased data storage. Transporting the gradient as an independent quantity has been used in Cubic
Interpolated Pseudo-particle/Constrained Interpolation Profile (CIP) [13,14] methods for some time, however, only recently
has this approach spread to level set [15] and VOF methods [16]. In [15], a semi-Lagrangian scheme based on tensor product
cubic Hermite splines was used. This required a structured grid, and the issue of reinitialization was not treated. Specifically
designed for use with the advection scheme proposed in [15], a reinitialization procedure using a Fast Marching Method
(FMM) was introduced in [17]. Combined, these two should constitute a good choice for structured grids.

In [18], flow simulations using semi-Lagrangian gradient transport and the tetrahedral cubic Hermite interpolant de-
scribed in [19] were presented, though interface advection was not treated. Other interesting approaches to high-order
semi-Lagrangian advection schemes are found in [20,21]. In [20], a method for structured grids which uses a narrow-band
formulation with arbitrary order Gauss-Lobatto stencils is presented. In [21], a conservative, 2D unstructured scheme is
formulated using a combination of point values updated by a semi-Lagrangian scheme, and area average updated by a Finite
Volume scheme. These are only a few examples of the versatility of semi-Lagrangian schemes. An additional advantage is
that they are not limited by the Courant-Friedrichs-Lewy (CFL) condition, as the characteristics may be traced back across
several cells during one time step [22].

In the present work, we extend the work of [15] to general 3D unstructured grids, and include reinitialization of the
signed distance property, which is integrated into the gradient-augmented setting. This is done by a Fast Marching Method
which computes both the level set function and its gradient. For the FMM, we apply Huygens’ principle to obtain a local
approximation of the distance function. This approach requires local solutions of a small optimization problem, and differs
from the Finite Difference (FD) approach used in [17]. Huygens’ principle leads to the same type of update rule as presented
in e.g. [23,24], which are based on a control-theoretic approach. We use a narrow-band method with storage based on a
tetrahedral subgrid, meaning that general, unstructured primal grids are decomposed into tetrahedra.

To avoid overshoots and generation of artifacts in high-curvature areas, we develop a gradient limiting algorithm which
is demonstrated to be important for the overall accuracy. The proposed method can readily be incorporated into a parallel
setting, as we adhere strictly to compact stencils. While this has been done, the detailed parallel implementation and
performance are not the focus of the present work. It should be noted that in the Finite Element framework, another
approach with many of the same attractive features we seek already exists. The Discontinuous Galerkin Method has been
applied with the level set approach on unstructured grids [25,26] with excellent results.

The rest of the article is organized as follows. A brief description of the level set method, narrow-band and grid structure
is given in Section 2. Cubic Hermite interpolants for 1-, 2- and 3-simplices are described in Section 3, followed by an
explanation of the semi-Lagrangian advection scheme for function value and gradient in Section 4 and the reinitialization
procedure for the level set function in Section 5. We test the method on standard passive advection cases in Section 6, and
discuss the overall method and results in Section 7. To promote readability, much of the discretization details, examples and
theoretical support are left to Appendices.
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