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The paper is devoted to the further development and systematic performance evaluation
of a recent deterministic framework Nesvetay-3D for modelling three-dimensional rarefied
gas flows. Firstly, a review of the existing discretization and parallelization strategies for
solving numerically the Boltzmann kinetic equation with various model collision integrals
is carried out. Secondly, a new parallelization strategy for the implicit time evolution
method is implemented which improves scaling on large CPU clusters. Accuracy and
scalability of the methods are demonstrated on a pressure-driven rarefied gas flow through
a finite-length circular pipe as well as an external supersonic flow over a three-dimensional
re-entry geometry of complicated aerodynamic shape.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

In the last ten years or so there has been rapid development of explicit numerical methods and associated computer
codes for solving the kinetic equations of the rarefied gas dynamics in three space dimensions [20,17,2,13]. A more recent
approach is the high-order unstructured implicit Nesvetay-3D framework [38,39]. The main advantages of Nesvetay-3D over
other existing three-dimensional numerical methods for kinetic equations are two-fold. Firstly, its ability to use arbitrary
unstructured meshes, comprising not only tetrahedrons, but also elements of other shapes, makes Nesvetay-3D suitable for
industrial problems with complex geometries and various flow regimes. Secondly, the use of the efficient one-step implicit
time evolution method significantly accelerates convergence for steady-state problems. A recent application of the method
is the calculation of the flow in long finite-length pipes across a wide range of Knudsen numbers [42,41]. Results were
provided for length to radius ratios up to fifty, which so far has not been achieved by using other methods and codes.

The current implementation of the framework on parallel computers uses the Message Passing Interface (MPI) and is
based on the decomposition of the molecular velocity mesh while keeping the spatial mesh as a single block. Such approach
is simple and strictly equivalent to the sequential implementation. However, it has restrictions on the size of the spatial
mesh on the most of the existing high-performance computing systems. This is because the data structure of the complete
spatial mesh is stored at each processor and the amount of the required memory for its storage does not decrease with
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the increasing number of processors used. Another problem is that the use of the data reduction operators can affect the
scalability of the parallel code, see e.g. [40] for the studies of the analogous methods in two space dimensions.

The present work is a follow-on to [39] and has two objectives. Firstly, the developments of the existing implicit parallel
method over the last four years are reviewed and further improvements are introduced. Secondly, the multi-block version
of the numerical framework is presented, which does not use the data exchange between blocks during the solution of
the linear system of equations for the time increments in the implicit scheme. Although the resulting parallel method is
not strictly equivalent to the single-block method, the resulting method is free of the problems of the single-block parallel
implementation and is simple enough for practical implementation.

The convergence properties and parallel scalability of various versions of the method are compared on two test problems.
The first problem concerns rarefied gas flow through a short circular pipe, connecting two reservoirs with gas under different
pressures. The difficulty here is to compute the solution with satisfactory accuracy across all degrees of gas rarefaction from
the free-molecular to nearly-continuum flow. In the present work for the first time a spatial mesh convergence study is
presented, using three consequently refined meshes. The results of three advection schemes are compared with one another
and with the well-resolved DSMC calculations [48]. It is known that the use of mesh partitioning may seriously degrade
the convergence properties of the implicit time-marching schemes [34]. The results are presented that demonstrate the
behaviour of the present implicit method for multi-block meshes.

The second problem concerns an external supersonic flow over a model winged re-entry space vehicle (RSV), proposed
by Central Aerohydrodynamic Institute (TsAGI). The model has a rather complex shape, which includes a blunt fuselage,
swept wings, keel and flap. Recently, the aerodynamics of this vehicle has been extensively studied on the basis of the
compressible Euler equations for a wide range free-stream Mach numbers [43,44]. In the present work the rarefied regime
of the flow is examined for a moderate free-stream velocity for the conditions, approximately corresponding to 100 km of
altitude. To the best of our knowledge, it is the first time when the flow over such a complex vehicle has been computed
using the kinetic equations.

The selected test problems require the ability to handle three-dimensional geometries and flow features with steep
gradients at very different degrees of rarefaction. They are thus very suitable for testing the accuracy and robustness of the
numerical methods for kinetic equations.

The rest of the paper is organized as follows. The governing equations are presented in Section 1. The sequential numer-
ical algorithm is described in Section 2. The parallel strategies are discussed in Section 4. Numerical results are presented
in Section 5 and conclusions are drawn in Section 6.

2. Governing equations

The present work concerns the monatomic rarefied gas flows. A three-dimensional state of the rarefied gas is determined
by the velocity distribution function f (x, ξ), where ξ = (ξ1, ξ2, ξ3) are the components of the molecular velocity vector in
the spatial directions x = (x1, x2, x3) = (x, y, z). Let l∗ , p∗ , T∗ , μ∗ be characteristic scales of length, pressure, temperature
and viscosity, respectively; β∗ = √

2kT∗/m is used as the characteristic scale of velocity, t∗ = l∗/β∗ is the scale of temporal
variable. Here m is mass of a molecule, k is the Boltzmann constant. The non-dimensional macroscopic quantities, such as
number density n, temperature T , mean velocity u = (u1, u2, u3) and heat flux q = (q1,q2,q3) vectors are defined as the
integrals of the velocity distribution function with respect to the molecular velocity:⎛
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where u2 = uαuα , ξ2 = ξαξα , v2 = vα vα , dξ = dξ1 dξ2 dξ3.
In the non-dimensional variables the Boltzmann equation with the S-model collision integral [29,30] for the distribution

function f has the following form:
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Here rarefaction parameter δ defines the degree of gas rarefaction and is inversely proportional to the Knudsen number Kn;
summation of over the repeated Greek indexes is assumed. For a monatomic gas the Prandtl number Pr = 2/3. The hard-
sphere intermolecular interaction μ = √

T is used in all calculations.
The kinetic equation (2) has to be augmented with the boundary conditions. Let n = (n1,n2,n3) be the unit normal

vector to a boundary surface, pointing in the outward direction to the surface. Assuming the diffuse molecular scattering
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