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1. Introduction

This note comments on some recently developed techniques for computing an approximate solution to a Boundary
Integral Equation (BIE) like

αq(x) +
∫
Γ

K (x, y)q(y)ds(y) = f (x), x ∈ Γ, (1)

where Γ is a piecewise smooth contour in the plane, and where K is one of the standard kernels of potential theory such
as, e.g., the single or double layer kernels associated with the Laplace or Helmholtz equations. A challenge in solving (1)
is that its integrand exhibits complicated singular behavior near the corner points of Γ . A classical technique for dealing
with this difficulty has been to expand the unknown q near the corner using specialized basis functions that incorporate
analytical knowledge about the singularity [2]. Recently, however, a remarkable observation has been made [1,10,11,9] that
there exist general purpose techniques that do not require any analytical à priori knowledge other than that the integrand
of (1) be absolutely integrable.
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In a nutshell, the idea of [1,10,11,9] is to use a standard Nyström discretization of (1) designed for a smooth contour.
The discretization should use a panel based (i.e. non-global) quadrature rule such as, e.g., a composite Gaussian rule. Then
simply refine the computational mesh near any corner. For any given computational tolerance ε (setting ε = 10−10 or
smaller is often entirely manageable), continue the refinement until the contribution from any panels directly touching a
corner is bounded by ε (this is possible since the integrand in (1) is absolutely integrable). Then simply omit the two panels
nearest to the corner from the discretization. Observe that on any remaining panel, the function q is smooth enough to be
accurately represented by the interpolant implied by the chosen quadrature rule.

The apparent drawback of a simplistic refinement process like the one described is that it can dramatically increase the
number of degrees of freedom required in the Nyström discretization. A key insight of [1,10,11,9] is that the “superfluous”
degrees of freedom added by the refinement can be eliminated from the linear system via a strictly local process. Moreover,
this local process can be executed in time that scales linearly with the number of degrees of freedom added. The end result
is a linear system discretizing (1) that has about as many degrees of freedom as one would have needed had the corner
not been present in the first place. (For the case of regular polygonal domains, the compression can even be performed in
sublinear time [9].)

The task of “squeezing out” the degrees of freedom added by the local refinement near the corner is in [1,10,11,9]
executed via purpose-built local compression techniques that can be somewhat challenging to implement. The purpose of
this note is to demonstrate that this compression step can be executed via the general purpose direct solvers described in
[5,7,12,14].

2. A linear algebraic observation

The compression technique that allows us to eliminate the superfluous degrees of freedom is based on the observation
that certain off-diagonal blocks of the coefficient matrix resulting from the discretization of (1) have low numerical rank.
Critically, the important ranks do not depend on how many degrees of freedom are used in the refinement near the corner.
To illustrate how such rank-deficiencies can be exploited, consider in general the task of solving the linear system[

A11 A12
A21 A22

][
q1
q2

]
=

[
f1
f2

]
, (2)

where A11 is of size n1 × n1 and A22 is of size n2 × n2. Now assume that A12 and A21 each are of rank k. Think of n1 as a
large number (e.g. the number of degrees of freedom used in the refinement of the corner, say n1 ∼ 103), and k as a small
number (often in the range 20–50). Then A12 and A21 admit factorizations

A12 = U1 B12
n1 × n2 n1 × k k × n2

and
A21 = B21 V∗

1,

n2 × n1 n2 × k k × n1
(3)

where U1 and V1 are well-conditioned matrices. We further assume that the data vector f1 belongs to the same
k-dimensional space as the columns of A12 (if it does not, then the space can be extended as needed),

f1 = U1 f̃1. (4)

When (3) and (4) hold, the linear system (2) with n1 + n2 unknowns is in a certain sense equivalent to the smaller system[
D11 B12
B21 A22

][
q̃1
q2

]
=

[
f̃1
f2

]
(5)

with only k + n2 unknowns. In (5), D11 and q̃1 are defined by

D11 = (
V∗

1A−1
11 U1

)−1
and q̃1 = V∗

1q1. (6)

When we say that (2) and (5) are “equivalent” we mean that the solution {q1,q2} of the larger system (2) can be obtained
from the solution {q̃1,q2} of the smaller system (5) via the formula

q1 = A−1
11 U1D11q̃1. (7)

To be precise, the equivalence holds when A11 and V∗
1A−1

11 U1 are both non-singular.

3. Matrix skeletons

For the low-rank factorizations (3), it is convenient to use a so-called interpolative decomposition (ID) [4] in which B12 is
a k × n2 matrix consisting of k rows of A12 and B21 is an n2 × k matrix consisting of k columns of A21. The matrices U1
and V1 each hold a k × k identity matrix as a submatrix, and have no entries whose magnitude exceeds 1.

The advantage of using an ID is that the matrices A12 and A21 need never be formed. Instead, a local computation deter-
mines the index vectors pointing out which columns and rows are needed, and then only those entries need to be computed
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