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A deterministic method is proposed for solving the Boltzmann equation. The method
employs a Galerkin discretization of the velocity space and adopts, as trial and test
functions, the collocation basis functions based on weights and roots of a Gauss–Hermite
quadrature. This is defined by means of half- and/or full-range Hermite polynomials
depending whether or not the distribution function presents a discontinuity in the velocity
space. The resulting semi-discrete Boltzmann equation is in the form of a system of
hyperbolic partial differential equations whose solution can be obtained by standard
numerical approaches. The spectral rate of convergence of the results in the velocity
space is shown by solving the spatially uniform homogeneous relaxation to equilibrium of
Maxwell molecules. As an application, the two-dimensional cavity flow of a gas composed
of hard-sphere molecules is studied for different Knudsen and Mach numbers. Although
computationally demanding, the proposed method turns out to be an effective tool for
studying subsonic slightly rarefied gas flows.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The conventional continuum approach to gas dynamics, namely the Navier–Stokes equations with no-slip boundary con-
ditions, is justified when the average distance traveled by molecules between two successive collisions, λ, is much smaller
than a characteristic length, L, associated with the flow geometry. This condition breaks down in several physical situations
ranging from the re-entry of spacecraft in upper planetary atmospheres, characterized by large λ, to fluid–structure interac-
tion in small-scale micro-electro-mechanical systems, characterized by small L. In such situations, a microscopic description
of the gas based on the Boltzmann equation is required [1,2]. In the absence of external forces, the Boltzmann equation for
a gas composed of a single monatomic species takes the form

∂ f

∂t
+ v · ∇x f = C( f , f ), (1)

where

C( f , f ) =
∫
R3

∫
S2

[
f ∗ f ∗

1 − f f1
]
σ

(‖vr‖, k̂ · vr
)‖vr‖dv1 d2k̂. (2)

In Eqs. (1) and (2), f (x, v, t) denotes the distribution function of atomic velocities v at spatial location x and time t , whereas
C( f , f ) gives the collisional rate of change of f at the phase space point (x, v) at time t and we have used the shorthand
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f ∗ = f (x, v∗, t), f ∗
1 = f (x, v∗

1, t) and f1 = f (x, v1, t). As is clear from Eq. (2), C( f , f ) is a non-linear operator of f , whose

precise structure depends on the differential cross section σ(‖vr‖, k̂ · vr) calculated from the interatomic potential for the
system studied. The dynamics of binary encounters determines the differential cross section as a function of the modulus
‖vr‖ of the relative velocity vr = v1 − v of two colliding atoms and of the orientation of the unit impact vector k̂ with
respect to vr . The collisional dynamics also gives the relationship between the pre-collisional velocities, v∗ and v∗

1, and the
post-collisional velocities, v and v1, in a binary collision

v∗ = v + (vr · k̂)k̂, (3)

v∗
1 = v1 − (vr · k̂)k̂. (4)

The prevalent approach for numerically solving Eq. (1) is a stochastic-based method called the Direct Simulation Monte
Carlo (DMSC) [3]. The distribution function is represented by a number of particles which move in the computational
domain and collide according to stochastic rules derived from Eqs. (1) and (2). Macroscopic flow properties are obtained
by time averaging particle properties. If the averaging time is long enough, then accurate flow simulations can be obtained
by a relatively small number of particles. Variants of the DSMC have been proposed over the years to improve solution
accuracy in the presence of high density gradients [4] and for low Mach number flows [5]. Although particle-based methods
are by far the most effective tools in describing non-equilibrium gas flows, they are not well suited to simulate unsteady gas
flows. Indeed, in this case the possibility of time averaging is lost or reduced. Acceptable accuracy can only be achieved by
increasing the number of simulation particles or superposing several flow snapshots obtained from statistically independent
simulations of the same flow but, in both cases, the computing effort is considerably increased. The simulation of steady
gas flows in the near-continuum limit represents an additional challenge since the time scale on which the particle-based
methods are forced to operate is much shorter than the characteristic macroscopic time and therefore explicit integration
to steady-state is computationally demanding. Approaches based on a direct discretization of the Boltzmann equation in
the phase space are believed to be a feasible alternative in these cases since they provide solutions with high accuracy
even in unsteady conditions and offer the possibility of a direct steady-state formulation [6,7]. As such, they have been
applied to study several problems of both theoretical interest and practical importance, including the viscous gas damping
in microfluidic devices [8,9], the onset of instability in a rarefied gas environment [10] and the investigation of ghost
effects [2,11]. Deterministic methods of solution present some further assets compared to particle-based methods. Firstly,
they are more suited to be adopted within a domain decomposition approach since the need to exchange information
between kinetic and macroscopic equations requires smooth numerical solutions [12,13]. Secondly, unlike particle-based
methods their implementation on massively parallel computers with Single Instruction Multiple Data (SIMD) architecture,
such as multi-cores and Graphic Processing Units (GPUs), can easily realize the full potential of these processors [14–16].
These aspects also prompted the development of deterministic methods of solution.

Considerable progress has been accomplished in developing deterministic method for kinetic model equations [17,18].
By contrast, an accurate and efficient direct solution of the Boltzmann equation itself remains a challenging problem. A com-
mon strategy adopted for solving Eq. (1) consists in decoupling the transport and the collision terms by time-splitting the
evolution operator into a transport step and a collisional step. The transport step requires to solve a system of hyper-
bolic conservation laws coupled at the boundaries. Their discretization can be performed in a variety of ways, including
finite-difference, finite-volume, finite-element or spectral methods [19]. The collision step consists of solving a spatially ho-
mogeneous relaxation equation. This is the more computationally demanding part since it involves the computation of the
bilinear five-fold integral defining the collision operator, Eq. (2). The numerical approaches to evaluate the collision step
may be grouped into two broad categories. To the first category belong methods referred to as discrete velocity models
(DVM). They make use of a Cartesian grid in velocity space and construct a discrete collision mechanics on the points of the
grid that preserve the main physical properties of the collision integral, namely equilibrium states, collision invariants and
entropy inequality [20]. DVM methods have high computational cost and low order of accuracy although fast algorithms
have been recently developed for a restricted set of collision kernels [21]. To the second category belong methods which
adopt a Galerkin discretization of the velocity space. They are based on expanding the velocity dependence of the distribu-
tion function in a set of trial functions with expansion coefficients that depend on position and time. The Galerkin ansatz is
substituted in the space homogeneous relaxation equation which is subsequently multiplied by test functions and integrated
in the velocity space. According to the Galerkin approach, test and trial functions are assumed to be the same. The above
procedure yields a system of hyperbolic partial differential equations for the expansion coefficients. Galerkin methods can
be further distinguished depending on the basis functions which they employ. In Fourier–Galerkin approach, the distribution
function is expanded in trigonometric polynomials and the fast Fourier Transform is used to accelerate the computation of
the collision integral in the velocity space. Several different methods have been developed starting from different repre-
sentation of the collision integral [22–25]. These methods are generally very efficient and spectrally accurate for smooth
solutions. Their major shortcoming is the loss of some of the properties of the solution such as positivity and conservation
of momentum and energy. Preservation of collision invariants can be enforced but the use of correction procedures may
limit the accuracy of the solutions. Discontinuous Galerkin methods adopt discontinuous piecewise polynomials as test and
trial functions [26–29]. Although computationally demanding, these methods have the remarkable feature to provide spec-
tral accuracy in the velocity space even for discontinuous solutions which typically occur in the presence of solid surfaces.
A hybrid approach is adopted in Refs. [30,31] where the distribution function is expanded in Laguerre polynomials with



Download English Version:

https://daneshyari.com/en/article/6933151

Download Persian Version:

https://daneshyari.com/article/6933151

Daneshyari.com

https://daneshyari.com/en/article/6933151
https://daneshyari.com/article/6933151
https://daneshyari.com

