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We solve the V-V-P, vorticity–velocity–pressure, formulation of the stationary incompressi-
ble Navier–Stokes equations based on the least-squares finite element method. For the
discrete systems, we use a conjugate gradient (CG) solver accelerated with a geometric
multigrid preconditioner for the complete system. In addition, we employ a Krylov space
smoother inside of the multigrid which allows a parameter-free smoothing. Combining
this linear solver with the Newton linearization, we construct a very robust and efficient
solver. We use biquadratic finite elements to enhance the mass conservation of the
least-squares method for the inflow–outflow problems and to obtain highly accurate
results. We demonstrate the advantages of using the higher order finite elements and the
grid independent solver behavior through the solution of three stationary laminar flow
problems of benchmarking character. The comparisons show excellent agreement between
our results and those of the Galerkin mixed finite element method as well as available
reference solutions.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The least-squares finite element method (LSFEM) is a numerical method for the solution of partial differential equations.
The LSFEM is generally motivated by the desire to recover the advantageous features of Rayleigh–Ritz methods, as for in-
stance, the choice of the approximation spaces is free from discrete compatibility conditions and the corresponding discrete
system is symmetric and positive definite [1].

In this paper, we solve the incompressible Navier–Stokes (NS) equations with the LSFEM. Direct application of the LSFEM
to the second-order NS equations requires the use of quite impractical C1 finite elements [1]. Therefore, we introduce the
vorticity as a new variable to recast the NS equations to a first-order system of equations, i.e. the vorticity–velocity–pressure
(V-V-P) system. The classical V-V-P formulation has been investigated by many authors, for instance by Bochev [2], Jiang [3]
and Bochev and Gungburger [1] and with further modifications by Heys et al. [4–6]. We study the classical V-V-P system.

As it was mentioned, the resulting LSFEM system is symmetric and positive definite [1]. This permits the use of the
conjugate gradient (CG) method and efficient multigrid solvers for the solution of the discrete systems. In order to improve
the efficiency of the solution method, the multigrid and the Krylov subspace method, here CG, can be combined with two
different strategies. The first strategy is to use the multigrid as a preconditioner for the Krylov method [7]. The advantage of
this scheme is that the Krylov method reduces the error in eigenmodes that are not being effectively reduced by multigrid.
The second strategy is to employ Krylov methods as multigrid smoother. The Krylov methods appropriately determine the
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size of the solution updates at each smoothing step [8]. This leads to smoothing sweeps which, in contrast to the standard
SOR or Jacobi smoothing, are free from predefined damping parameters.

Heys et al. studied the LSFEM solution of the Stokes equation [7] and the NS equations [9,4,6] with an algebraic multigrid
preconditioned CG method. A geometric multigrid preconditioned CG solver was used by Ranjan and Reddy [10] for the
Spectral/hp LSFEM solution of the NS equations. They demonstrated superior convergence of the multigrid solver compared
to the Jacobi preconditioning. More interestingly, Köster [11] and Wobker [8] used preconditioned BiCGStab as smoother in
a geometric multigrid method as well as an outer solver around it to solve the Poisson equation with standard Galerkin
finite element method. They reported higher numerical stability and lower total costs of the solution process compared to
the stand-alone multigrid or BiCGStab solvers.

We develop a geometric multigrid solver as a preconditioner for the CG (MPCG) iterations to solve the V-V-P system
with LSFEM. In addition, we use a CG pre/post-smoother to obtain efficient and parameter-free smoothing sweeps. We
demonstrate a robust and grid independent behavior for the solution of different flow problems with both bilinear and
biquadratic finite elements.

Despite the advantages of the LSFEM, the lack of local mass conservation of this method is one of its drawbacks. Different
strategies have been employed to overcome this deficiency. For very recent techniques and also an overview of the previous
efforts we refer to the works of Bochev et al. [12,13]. One remedy for 2D problems, which is also analyzed in this work,
is to use higher order finite elements [14]. Weighting the continuity equation more strongly [15] is another well-known
method to recover mass conservation. We show, through the Poiseuille flow and the flow around cylinder problems, that
quadratic finite elements satisfy the mass conservation to a great extent without the need to further weight the continuity
equation.

Moreover, we show that accurate results can be obtained with V-V-P LSFEM provided that higher order finite elements
are used. We demonstrate this with a quantitative analysis of the flow around cylinder and the lid-driven cavity problems.

Therefore, the paper is organized as follows: in the next section we introduce the incompressible NS equations, the
continuous and the discrete least-square principles with their properties and the designed LSFEM solver. In the next section,
we present the general MPCG solver settings and the detailed results of three incompressible fluid flow problems. Finally,
we make a conclusion in the last section.

2. LSFEM for the Navier–Stokes equations

2.1. Governing equations

The incompressible NS equations for a stationary flow are given by⎧⎪⎨
⎪⎩

u · ∇u + ∇p − ν�u = f in Ω,

∇ · u = 0 in Ω,

u = g D on ΓD ,

n · σ = gN on ΓN

(1)

along with the zero mean pressure constraint∫
Ω

p = 0 (2)

where Ω ⊂ R
2 is a bounded domain, p is the normalized pressure p = P/ρ , ν = μ/ρ is the kinematic viscosity, f is the

source term, g D is the value of the Dirichlet boundary conditions on the Dirichlet boundary ΓD , gN is the prescribed traction
on the Neumann boundary ΓN , n is the outward unit normal on the boundary, σ is the stress tensor and Γ = ΓD ∪ ΓN and
ΓD ∩ ΓN = ∅. The kinematic viscosity and the density of the fluid are assumed to be constant.

The first equation in (1) is the momentum equation where velocities u = [u, v]T and pressure p are the unknowns and
the second equation represents the continuity equation.

2.2. First-order systems

The straightforward application of the LSFEM to the second-order NS equations requires C1 finite elements [1]. To avoid
the practical difficulties in the implementation of such FEMs, we first recast the second-order equation to a system of
first-order equations. Another important reason for not using the straightforward LSFEM is that the resulting system matrix
will be ill-conditioned [16].

2.2.1. Vorticity–velocity–pressure formulation
A common strategy to reformulate the second-order NS equations to an equivalent first-order system is to introduce the

vorticity, ω, as a new variable [1]. In two-dimensional problems the vorticity is a scalar and defined as

ω = ∇ × u. (3)



Download	English	Version:

https://daneshyari.com/en/article/6933152

Download	Persian	Version:

https://daneshyari.com/article/6933152

Daneshyari.com

https://daneshyari.com/en/article/6933152
https://daneshyari.com/article/6933152
https://daneshyari.com/

