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We exploit the high accuracy of spectral collocation methods in the context of a two-
level continuation scheme for computing ground state solutions of dipolar Bose–Einstein
condensates (BEC), where the first kind Chebyshev polynomials and Fourier sine functions
are used as the basis functions for the trial function space. The governing Gross–Pitaevskii
equation (or Schrödinger equation) can be reformulated as a Schrödinger–Poisson (SP)
type system [13]. The two-level continuation scheme is developed for tracing the first
solution curves of the SP system, which in turn provide an appropriate initial guess for the
Newton method to compute ground state solutions for 3D dipolar BEC. Extensive numerical
experiments on 3D dipolar BEC and dipolar BEC in optical lattices are reported.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

In past years, a successful experimental result has been obtained on dipolar Bose–Einstein condensates (BECs), where
a BEC of 52Cr atoms has been realized [1]. The achievement allows experimental investigations of the unique properties
of dipolar BEC. The experimental breakthrough on cooling and trapping of molecules [2], on photoassociation [3], and on
Feshbach resonances of binary mixtures [4] have opened up new research areas in the atomic physics community [5–11].

The 3D dipolar BEC at zero temperature trapped in a harmonic potential V (x) = m
2 (ω2

x x2 +ω2
y y2 +ω2

z z2) is well described
by the macroscopic wave function ψ(x, t) whose evolution is governed by the Gross–Pitaevskii equation (GPE) [5,12]

ih̄∂tψ(x, t) =
[
− h̄2

2m
� + V (x) + U0

∣∣ψ(x, t)
∣∣2 + V dip(x) ∗ ∣∣ψ(x, t)

∣∣2
]
ψ(x, t), x ∈ R

3, t > 0, (1.1)

where h̄ is the Planck constant, t is the time variable, x = (x, y, z)T ∈ R
3, m is the mass of a dipolar particle, ωx , ωy , and ωz

are the trap frequencies in the x-, y-, and z-direction, respectively. The parameter U0 = 4π h̄2as
m denotes local (or short-range)

interaction between dipoles in the condensates with as the s-wave scattering length, V dip denotes the long-range dipolar
interaction between two dipoles which is given by
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V dip(x) = μ0μ
2
dip

4π

1 − 3(x · n)2/|x|2
|x|3 = μ0μ

2
dip

4π

1 − 3 cos2 θ

|x|3 , x ∈ R
3, (1.2)

where μ0 is the vacuum magnetic permeability, μdip is the permanent magnetic dipole moment (e.g., μdip = 6μB for 52Cr
with μB being the Bohr magneton), n = (n1,n2,n3)

T ∈ R
3 is the dipole axis (or dipole moment) with ‖n‖2 = 1, and θ is

the angle between the dipole axis n and position vector x. The wave function ψ is normalized according to

‖ψ‖2 :=
∫
R3

∣∣ψ(x, t)
∣∣2

dx = M, (1.3)

where M is the total number of dipolar particles in the dipolar BEC.
By introducing the dimensionless variables [13], t → t

ω0
with ω0 = min{ωx,ωy,ωz}, x → a0x with a0 = √

h̄/mω0, ψ →√
Mψ

a3/2
0

, Eqs. (1.1) and (1.3) are expressed as

i∂tψ(x, t) =
[
−1

2
� + V (x) + β

∣∣ψ(x, t)
∣∣2 + λ

(
Udip(x) ∗ ∣∣ψ(x, t)

∣∣2)]
ψ(x, t), x ∈R

3, t > 0, (1.4)

‖ψ‖2 =
∫
R3

∣∣ψ(x, t)
∣∣2

dx = 1, (1.5)

where V (x) = 1
2 (γ 2

x x2 + γ 2
y y2 + γ 2

z z2) is the dimensionless harmonic trapping potential with γx = ωx/ω0, γy = ωy/ω0, and

γz = ωz/ω0, β = MU0

h̄ω0a3
0

= 4πas M
a0

, λ = mMμ0μ
2
dip

3h̄2a0
, and the dimensionless long-range dipolar interaction potential Udip is given

as

Udip(x) = 3

4π

1 − 3(x · n)2/|x|2
|x|3 = 3

4π

1 − 3 cos2 θ

|x|3 , x ∈ R
3. (1.6)

Recently, Bao et al. [13] decoupled the two-body dipolar interaction potential into short-range (or local) and long-
range interactions (or repulsive and attractive interactions), and transformed Eq. (1.4) into a Gross–Pitaevskii–Poisson or
Schrödinger–Poisson (SP) type system of the following form

i∂tψ(x, t) =
[
−1

2
� + V (x) + (β − λ)

∣∣ψ(x, t)
∣∣2 − 3λϕ̃(x, t)

]
ψ(x, t), x ∈R

3, t > 0, (1.7){
−�ϕ(x, t) = ∣∣ψ(x, t)

∣∣2
, lim|x|→∞ϕ(x, t) = 0,

ϕ̃(x, t) = ∂nnϕ(x, t),
(1.8)

where ∂n = n · ∇ = n1∂x + n2∂y + n3∂z , ∂nn = ∂n(∂n). The decoupled short-range and long-range interactions of the dipolar
interaction potential are attractive and repulsive, respectively, when λ > 0; and are repulsive and attractive, respectively,
when λ < 0. Moreover, the total energy per particle is

E(ψ) = Ekin(ψ) + Epot(ψ) + E int(ψ) + Edip(ψ), (1.9)

where

Ekin(ψ) = 1

2

∫
R3

|∇ψ |2 dx, Epot(ψ) =
∫
R3

V (x)|ψ |2 dx,

E int(ψ) = β

2

∫
R3

|ψ |4 dx, Edip(ψ) = λ

2

∫
R3

(−|ψ |4 + 3|∂n∇ϕ|2)dx,

are kinetic, potential, interaction, and dipolar energies, respectively. Substituting the formula [14]

ψ(x, t) = e−iμtφ(x), x ∈ R
3, t � 0, (1.10)

into Eqs. (1.7)–(1.8) and the constraint (1.5), we obtain the nonlinear eigenvalue problem
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