
Journal of Computational Physics 256 (2014) 748–767

Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

Weak imposition of the slip boundary condition on curved
boundaries for Stokes flow

José M. Urquiza a,∗, André Garon b, Marie-Isabelle Farinas c

a GIREF, Département de mathématiques et de statistique, Université Laval, Québec, QC, G1V 0A6, Canada
b Département de Génie Mécanique, École Polytechnique de Montréal, Montréal, QC, H3T 1J4, Canada
c Département des sciences appliquées, Université du Québec à Chicoutimi, Chicoutimi, QC, G7H 2B1, Canada

a r t i c l e i n f o a b s t r a c t

Article history:
Received 16 January 2012
Received in revised form 27 April 2013
Accepted 19 August 2013
Available online 11 September 2013

Keywords:
Stokes and Navier–Stokes equations
Slip boundary conditions
Finite element method
Babuska’s paradox
Lagrange multiplier method
Nitsche’s method

We study the finite element approximation of two methods to weakly impose a slip
boundary condition for incompressible fluid flows: the Lagrange multiplier method and
Nitsche’s method. For each method, we can distinguish several formulations depending on
the values of some real parameters. In the case of a spatial domain with a polygonal or
polyhedral boundary, we prove convergence results of their finite element approximations,
extending previous results of Verfürth [33] and we show numerical results confirming
them. In the case of a spatial domain with a smooth curved boundary, numerical
results show that approximations computed on polygonal domains approximating the
original domain may not converge to the exact solution, depending on the values of
the aforementioned parameters and on the finite element discretization. These negative
results seem to highlight Babuska’s like paradox, due to the approximation of the boundary
by polygonal ones. In particular, they seem to contradict some of Verfürth’s theoretical
convergence results.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

In Ω , an open bounded and connected subset of Rn , n = 2 or 3, with Lipschitz continuous boundary Γ = ∂Ω , we
consider the stationary Stokes equations

−∇ · T (u, p) = f in Ω, (1)

∇ · u = 0 in Ω, (2)

where T (u, p) = −p I + 2μD(u) is the stress tensor, D(u) = (∇u + ∇uT )/2 is the deformation rate tensor and μ > 0 is the
kinematic viscosity of the fluid. On the boundary we prescribe a slip boundary condition:

u · ν = g on Γ, (3)

ν · T (u, p) · τ i = f2,i, i = 1,n − 1, on Γ. (4)

Here, ν is the outgoing unit normal vector to Γ whereas τ i , i = 1,n−1, are orthonormal vectors spanning the plane tangent
to Γ . When g = 0 (zero-flux condition) and f2,i = 0, i = 1,n − 1 (vanishing forces in tangential directions to the boundary),
this is also known as the free slip boundary condition.
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Fig. 1. Smooth domain Ω and its meshed approximation Ωh .

In the literature, slip-type boundary conditions are less frequent than, for instance, Dirichlet or Neumann (free) boundary
conditions. Nevertheless, they are involved in problems with biological surfaces and interfaces [6,7], polymer melts [13],
slide coating [11], turbulence models [24], or special problems with Newtonian fluid flows at solid interfaces [25]. They can
be viewed as a mix of a Dirichlet boundary condition in the normal direction to the boundary and a Neumann (i.e. natural)
boundary condition in tangential directions.

In the numerical literature, several weak formulations have been devised to form the basis of a finite element approx-
imation of Stokes or Navier–Stokes equations with a slip boundary condition. The theoretical results, that we review in
the following, were established for Ω with a smooth curved (non-polygonal) boundary and finite element approximations
were considered for polyhedral domains approximating this smooth domain. These theoretical results differ primarily in the
treatment of the boundary flux condition (3).

In one of the simplest formulation, the boundary flux condition (3) is imposed strongly: the velocity approximation
is sought in an ansatz space where all vectors satisfy (3) at each nodes when Lagrange finite elements are used. The
first convergence results were proved by Verfürth [31]. The convergence rates obtained in [31] are not optimal and were
improved by Knobloch [22] and Bänsch and Deckelnick [4], from 1/2 to 3/2 in usual norms, in the case of Taylor–Hood
(P2/P1) elements. This rate cannot be improved further in general due to the error in the approximation of Ω by polygonal
domains Ωh (see for instance Strang and Fix [29, Section 4.4]).

Interestingly, and in direct relation to our present work, in [31] Verfürth argued that the obtained suboptimal rate
could be difficult to improve due to Babuska’s like paradox [2,3]. Babuska’s paradox can be stated as follows: the solution of
Kirchhoff plate equations with simple support boundary conditions in a disk is not the limit of the solutions to the same equations posed
on polygonal domains approaching the disk, as in Fig. 1 (left). One can then easily imagine that some difficulties may appear
when performing finite element approximations of these equations in meshed polygonal domains approaching the disk, like
in Fig. 1 (right). This paradox holds in fact whenever a smooth curved boundary is involved (see [23]). That Babuska’s like
paradox is into play in the case of Stokes equations with slip boundary conditions was pointed out by Verfürth [31] by
observing that the stream function formulation of Stokes equations with free slip boundary conditions, obtained by posing
u = curlψ (which is possible since ∇ · u = 0, and then ψ is the so-called stream function), leads to the Kirchhoff plate
equation −μ�2ψ = curl f with simple support boundary conditions: ψ = 0 and �ψ = 2κ∂ψ/∂ν (where κ is the curvature
of ∂Ω , see for instance [12] for details).

Motivated by the lack of optimality in his estimates, Verfürth [32] proposed to handle the constraint Eq. (3) in a weak
way, by the Lagrange multiplier method. With the introduction of a new variable – the Lagrange multiplier-finite element
approximation spaces need to be chosen with care (enriching the velocity approximation space with bubble functions having
their support in the vicinity of Γ , like in [32], for instance) or residual boundary terms may be added in the original vari-
ational formulation of the equations, resulting in a so-called stabilized formulation [33]. As Stenberg [28] already observed,
formal elimination of the Lagrange multiplier in these stabilized formulations results in problem formulations similar to
Nitsche’s method [26] to weakly append Dirichlet type boundary conditions.

The objective of this work is to study the efficiency of these two methods (the Lagrange multiplier method and Nitsche’s
method) to impose in a weak way a slip boundary condition (more precisely flux boundary condition (3)) for Stokes (and
Navier–Stokes) equations, and to put into evidence some convergence problems which may be related to Babuska’s like
paradox, in the case of a domain with a smooth curved boundary. As convergence of finite element approximations are
difficult to establish in the case of a smooth curved boundary, and as convergence of these methods depends on the values of
some parameters (see Sections 2 and 4) even in the case of a polygonal boundary, we first study these methods theoretically
only in the case of a polygonal (or polyhedral) boundary. Then we test them numerically, first with a polygonal boundary
(in order to illustrate the theoretical results) and then with a smooth boundary in order to put into evidence the paradox.

In Section 2, after recalling the Lagrange multiplier method, we first describe a set of variants of the stabilized formula-
tion introduced and studied in [33]. In Section 3, we prove the convergence of the resulting approximation method when
Ω has a polygonal or polyhedral boundary. The theoretical convergence results depend on the values of the parameters. In
Section 4, we prove the stability of several variants of Nitsche’s method, depending on the values of the parameters, assum-
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