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place in a three-dimensional domain. For the spatial discretization of the problem we
develop a novel finite volume element (FVE) method associated to a piecewise linear finite
element approximation of the cross-diffusion system. We study the main properties of the
unique equilibrium of the related dynamical system. A rigorous linear stability analysis

Ip(i?/i‘:;o:,ﬁhme element method around the spatially homogeneous steady state is provided and we address in detail the
Brusselator model formation of Turing patterns driven by the cross-diffusion effect. In addition we focus on
Cross-diffusion effect the spatial accuracy of the FVE method, and a series of numerical simulations confirm the
Spatial patterns expected behavior of the solutions. In particular we show that, depending on the spatial

dimension, the magnitude of the cross-diffusion influences the selection of spatial patterns.
© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The theory of spatial patterns generation goes back to the pioneering work of Turing [46]. Essentially, one chemical, the
activator, stimulated and enhanced the production of the other chemical, which, in turn, depleted or inhibited the formation
of the activator. The so-called Turing mechanism of pattern formation is onset by a diffusion-induced instability around the
homogeneous steady state, that is, the concentration of the species evolves from an initial near homogeneity into inhomo-
geneous spatial distributions. This typically occurs if the diffusion of the inhibitor is large enough in comparison to that of
the activator. This phenomenon has been reported in the context of the chlorite-iodide-malonic acid (CIMA) reaction [12,35]
(see also [15]). On the other hand, further experimental studies have demonstrated that the cross-diffusion effect can lead to
the formation of spatial and spatiotemporal patterns (see e.g. [47]). This is an interesting phenomenon whose applications
range from biochemical to physical and economical processes. Numerous investigations from the viewpoint of mathematical
and numerical analysis deal with some aspects of these problems, mainly focusing on the one- or two-dimensional case.
In [4], it is shown that the spatial dimension has an important influence on the Turing pattern behavior. In the case when
the wavelength of the Turing pattern is sufficiently (at least two times) larger than the thickness of the medium, three-
dimensional patterns can be simplified to two-dimensional patterns. Otherwise, the three-dimensional patterns may differ
from the well studied two-dimensional case (see [28,30] and the references therein). In this paper we aim at studying to
which extent the spatial dimension influences the pattern behavior. Our analysis differs from the one in [4] in that we con-
sidered Turing patterns affected/induced by cross-diffusion mechanisms. We will focus on an inhomogeneous Brusselator
model (see e.g. [21,36]), here assuming the following form
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where Q271 :=2 x(0,T), X7 :=(9£2) x (0, T) for a fixed T > 0. We take o and 8 as positive constants, whereas D11 and Dy,
are the self-diffusion coefficients. The term A(Djju;) =V - (V(Djju;)) takes into account the flux of u;, V(Djju;), induced
by the gradient of species u;. Likewise, Dj; is the cross-diffusion coefficient for i # j. This system arises in the mathematical
modeling of an autocatalytic chemical interaction governed by the following reaction mechanism:
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Here A and B are the major species, X and Y the intermediate species. The third step is autocatalytic. As in [9], after
employing the following scaled variables
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and dropping the bar on t, we find that the evolution of u; and u, is governed by the ODE system
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vra = Buq — ujuy.

By introducing the cross-diffusion effect as in [47], system (1.2) leads to (1.1). This system is a suitable prototype for the
study of a larger class of reaction-diffusion systems. By means of a linearized stability analysis, we will first show that

if the parameters satisfy the condition 8 < min{1 + 2,1 + “ZD“_ZD+ vD“Dzz}. then the cross-diffusion effect gives rise to
the formation of patterns. Then, we focus on the spatial structure of these patterns with the help of a series of numerical
tests.

An important number of contributions have been proposed to treat systems like (1.1) from a numerical perspective, either
considering or not the cross-diffusion effect (see [2,5,6,8,14,18,21,39] for finite differences, finite volumes, spectral and finite
element methods for the spatial discretization). Here, and following [11,27,37], we propose a new finite volume element
(FVE) method for the numerical approximation of the underlying reaction-cross-diffusion system. We do not intend to carry
out a thorough comparison of the performances of the different discretization strategies, but we rather introduce a FVE
formulation because of its natural mass conservation property, and we employ it to study the formation and identification
of spatial patterns.

FVE methods exhibit several advantages over some of the approaches mentioned above. These include the ability of
treating arbitrarily complex geometries, unstructured and anisotropic meshes, a variety of boundary conditions (as robust
finite element methods) and they feature local conservation and front capturing properties inherent mainly to finite volume
methods (and highly desirable in the simulation of population dynamics). The key idea is that a complementary dual (or
adjoint) mesh is introduced and a transfer map permits to rewrite a classical Galerkin formulation as a finite volume method
(that is, in terms of fluxes passing through the faces of the primal elements). In the end, it is possible to reformulate
the discrete problem as a Petrov-Galerkin problem. Related variants are also known as marker and cell methods [20],
generalized difference methods [29], finite volume methods [1], covolume methods [34], box methods [3] or combined
finite volume-finite element methods [24]. These are in general restricted to the two-dimensional case. We stress that
even if in the present contribution we propose a FVE method for the particular inhomogeneous Brusselator system (1.1),
the derivation of the FVE formulation is suitable for a larger class of Turing-type models including e.g. the well-known
Gray-Scott [22], Gierer—-Meinhardt [19] or the Schnakenberg [41] equations. In addition, the convergence properties of FVE
methods can be studied rather straightforwardly by recasting the discrete formulation in a classical abstract framework for
nonlinear Petrov-Galerkin problems. Even if a rigorous convergence analysis goes beyond the scope of the paper, we stress
that optimal experimental rates of convergence are observed for both species, in the sense that the observed errors exhibit
the same convergence order as the finite element interpolation operators.

The remainder of this paper is structured as follows. In Section 2 we deduce from the mathematical standpoint, the
role of cross-diffusion in the generation of spatial patterns, and we provide the conditions for these patterns to appear.
A FVE formulation for approximating the governing equations is detailed in Section 3, and some numerical tests including
the study of convergence and formation of spatial patterns are shown in Section 4. Finally, some conclusions are drawn in
Section 5. Proofs of our main results are collected in Appendices A, B and C.
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