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Filtering is an approach for incorporating observed data into time-evolving systems. Instead
of a family of Dirac delta masses that is widely used in Monte Carlo methods, we here
use the Wiener chaos expansion for the parametrization of the conditioned probability
distribution to solve the nonlinear filtering problem. The Wiener chaos expansion is not the
best method for uncertainty propagation without observations. Nevertheless, the projection
of the system variables in a fixed polynomial basis spanning the probability space might be
a competitive representation in the presence of relatively frequent observations because the
Wiener chaos approach not only leads to an accurate and efficient prediction for short time
uncertainty quantification, but it also allows to apply several data assimilation methods
that can be used to yield a better approximate filtering solution. The aim of the present
paper is to investigate this hypothesis. We answer in the affirmative for the (stochastic)
Lorenz-63 system based on numerical simulations in which the uncertainty quantification
method and the data assimilation method are adaptively selected by whether the dynamics
is driven by Brownian motion and the near-Gaussianity of the measure to be updated,
respectively.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The assimilation of partial noisy observations into a hidden dynamical system for an improved estimate of a single
trajectory has many significant and practical applications in science and engineering. Examples include navigational and
guidance systems, radar tracking, sonar ranging, satellite and airplane orbit determination, the spread of hazardous plumes
or pollutants, prediction of weather and climate in atmosphere–ocean dynamics [23,24,26,21,15,1,14]. When the underlying
system is a continuous Markov process and the associated observations arrive sequentially in time, it is desirable to incor-
porate the data in real time via a recursive algorithm for practical reasons. One approach for this online estimation is the
alternate application of the prediction to quantify the uncertainty delivered by the evolving system (or to approximate the
prior measure) and the updating to incorporate the latest observation into the previous state estimation of the system (or
to approximate the posterior measure) in a sequential fashion.

In the simplest case of linear dynamics together with linear observations corrupted by an independent Gaussian noise,
the filtering problem can explicitly be solved by the Kalman filter which describes how the mean and covariance of the
posterior measure evolve given the observations [23,24]. For nonlinear systems where the conditioned measure cannot be
characterized by a Gaussian distribution, there occasionally exist analytic solutions but the applicability is quite limited [3].
As a result, work has been done to approximate the filtering solution in case of nonlinear systems. Traditional filters include
the extended Kalman filter [15], the ensemble Kalman filter [14], the bootstrap filter [17,13], and the Gaussian mixture filter
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[7,37,19,18]. Though they can in principle be applied to general physical models, each algorithm has its own theoretical and
computational problems in practical implementation [36,38,13].

The extended Kalman filter provides an analytic mapping of the first two moments like the Kalman filter does. However,
even when it is stable, significant error might occur while applying the extended Kalman filter to systems with strong
nonlinearities because the algorithm uses a linearization or a closure model of the state equations for the prediction step.
It is important to note that the updating method of the extended Kalman filter is the one from the Kalman filter and is
developed for the Gaussian prior measure, and hence in general not suitable for nonlinear systems. It is also important
to note that knowledge of the lower order first two moments, i.e., the mean and the covariance, is not sufficient to track
the trajectory in the non-Gaussian scenario because being unable to accurately describe the tail behavior of the posterior
measure implies that one is likely to lose the tracked object all together at some point over a long span of time.

The ensemble Kalman filter and the bootstrap filter employ a number of weighted Dirac masses, called particles, to
characterize the evolving conditional probability distribution. In both filters, the prior measure is approximated in a straight-
forward manner via a repetitive application of a pre-developed integrator for each realization of the prescribed random
inputs. Unfortunately the particle method can be impractical in case of high dimension because one may need a signifi-
cantly large number of particles to achieve a certain degree of accuracy but the forward integration of the model is often
very time-consuming and hence puts an upper limit on the number of particles [36,38,13]. Furthermore, it is not guaran-
teed in the ensemble Kalman filter that the ensemble members come from the true posterior distribution [14]. While the
bootstrap filter resolves the convergence issue, the algorithm prunes particles with small weight in order to prevent the
degeneracy in the weights [13]. This additional process subsequently causes other theoretical and computational problems
in the successive filtering. The Gaussian mixture filter, in which Gaussian kernels are used instead of particles, also suffers
from the degeneracy in the weights.

Our goal is to build a filtering approach that approximates not only the mean and covariance but the higher order
moments of the posterior with high accuracy and efficiency. To this end we first focus on the data assimilation step which
is indeed crucial for an accurate approximation of the filtering solution. From a careful examination of the data assimilation
methods employed by the traditional filters, we are guided not to insist on a particular assimilation but to adaptively apply
one of multiple updating algorithms depending on the characteristics of the prior measure for an improved assimilation
performance. In order to achieve the adaptivity of the assimilation algorithm, it is inadequate to use moments, discrete
measures and Gaussian kernels because conversion from one to another is not immediate. Hence the necessity for the
parametrization of the conditioned measure in terms of something different arises and we here use the Wiener chaos
expansion (WCE) which is an expansion of the system variables using a Galerkin projection of the model variables onto the
space spanned by a fixed orthonormal polynomial basis in the random variables [5,34,12]. From the truncated WCE, one
can immediately derive a variety of measure representations and the adaptation follows from applying one of the updating
methods in the traditional filters.

The adaptivity enabled by the WCE is not limited to the updating step. The uncertainty quantification in the Wiener
chaos approach is equivalent to finding the Wiener chaos coefficients due to its separation nature of deterministic effects
from randomness in a rigorous and effective manner. In some cases the numerical methods based on the WCE are more
efficient and accurate for the short time solutions than those based on the Monte Carlo simulations (see, e.g. [31,20] and
the references therein). This higher prediction performance of the WCE is the main reason for the successful filtering of
nonlinear deterministic systems in [27,43] where the data assimilation method is modeled upon the one used in the en-
semble Kalman filter. Importantly, the WCE allows for multiple ways to numerically approximate the coefficients forward in
time [27]. Therefore we can extend the adaptivity of the WCE further to the prediction step and solve the filtering problem
by applying an optimal choice from several combinations of the two subsequent operations provided the conditions under
which each algorithm outperforms are carefully studied. Our suggestion of the adaptive filtering is tested on the (stochastic)
Lorenz-63 model that can possibly be driven by three independent Brownian motions and shown to significantly reduce
the computational cost while retaining the accuracy that one can achieve from the bootstrap filter with a large number of
particles.

The current paper is arranged as follows. Some traditional filters are reviewed in Section 2. The Wiener chaos expansion
and its application to uncertainty quantification are introduced in Section 3. Section 4 is devoted to designing numerous
data assimilation methods for the WCE. Numerical simulations are performed in Section 5 and conclusions are drawn in
Section 6.

2. Filtering of dynamical systems

Consider the differential equation for a d-dimensional dynamical variable X(t), t ∈ R
+ ∪ {0},

Forward model dX(t) = b
(
t, X(t)

)
dt + s

(
t, X(t)

)
dW (t) (1)

where b ∈ R
d is the drift, s ∈R

d×l is the volatility, and Eq. (1) can possibly be driven by finitely many independent Brownian
motions W = (W1, W2, . . . , Wl)

t . Here the superscript t denotes the transpose. Suppose that the partial noisy observations
yn , n ∈ N, associated with Xn = X(n�) for an inter-observation time � > 0 satisfying

Observational data yn = P Xn + ηn, ηn ∼ N (0, Rn) (2)



Download English Version:

https://daneshyari.com/en/article/6933246

Download Persian Version:

https://daneshyari.com/article/6933246

Daneshyari.com

https://daneshyari.com/en/article/6933246
https://daneshyari.com/article/6933246
https://daneshyari.com

