
Journal of Computational Physics 258 (2014) 856–870

Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

A fast and high-order method for the three-dimensional
elastic wave scattering problem

Fanbin Bu a, Junshan Lin b,∗, Fernando Reitich c

a KLA-Tencor Corporation, 1 Technology Dr., Milpitas, CA 95035, USA
b Department of Mathematics and Statistics, Auburn University, Auburn, AL 36849, USA
c School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 2 April 2013
Received in revised form 27 October 2013
Accepted 11 November 2013
Available online 18 November 2013

Keywords:
Boundary integral equation method
Elastic wave scattering
FFT

In this paper we present a fast and high-order boundary integral equation method for the
elastic scattering by three-dimensional large penetrable obstacles. The algorithm extends
the method introduced in [5] for the acoustic surface scattering to the fully elastic
case. In our algorithm, high-order accuracy is achieved through the use of the partition
of unity and a semi-classical treatment of relevant singular integrals. The computational
efficiency associated with the nonsingular integrals is attained by the method of equivalent
source representations on a Cartesian grid and Fast Fourier Transform (FFT). The resulting
algorithm computes one matrix–vector product associated with the discretization of the
integral equation with O (N4/3 log N) operations, and it shows algebraic convergence.
Several numerical experiments are provided to demonstrate the efficiency of the method.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Elastic wave scattering plays a significant role in engineering and industrial design and identification. Examples include
the recovery of elastic properties of materials and composites, non-destructive testing and geophysical exploration. In this
paper, we consider the elastic wave scattering of a time harmonic (with eiωt time dependence) incident wave field that
impinges on a penetrable obstacle. In particular, we are interested in the case when the size of the obstacle is several
dozen times larger than the wavelength of the incident field. Such scattering problems usually exist in seismic exploration,
where the domain of interest is usually several kilometers [4], or in elastography for medical imaging, where the size
of human tissue is much larger than the wavelength of the high frequency incident beams [10,11]. Accurate numerical
solution of such problems is still challenging nowadays, as the wave field is usually highly oscillatory, and in general it
requires a large number of grid points to resolve the wave field with sufficient accuracy.

In the past few decades, various advanced numerical simulators have been developed to model the elastic wave scatter-
ing, these include the standard finite difference methods (e.g. [17,20,23,27,31,37]), and finite element methods (e.g. [15,16,
19,24,32,35]). However, both of them involve discretization over the volume of the obstacle, and their cost even at moderate
frequencies quickly becomes prohibitive. Moreover, the infinite exterior domain has to be truncated into a finite one, and
an absorbing boundary condition [9] or perfectly matched layer (PML) [3] needs to be imposed on the boundary. Integral
equation formulations, on the other hand, offer some advantages from a numerical perspective. Indeed, compared to the
finite element or finite difference approaches, the integral equations are only discretized on the surface of the obstacle,
which results in a dramatic reduction of computational cost for a given accuracy. Moreover, they enforce the radiation
condition automatically, as the very formulation encodes the correct behavior of outgoing waves. We refer the readers
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to [1,14,21,22,26,28] and references therein for recent developments of boundary element methods for solving the elastic
scattering problem.

Although the integral formulations provide significant gains in memory requirements, a brute-force integration scheme
would lead to O (N2) computation cost for each matrix–vector product, where N is the number of grid points. This is still
formidable even for supercomputers when N is very large. For this reason, a number of algorithms have been introduced
to evaluate the discretized integral equations in a fast way, of which the most celebrated algorithm is the fast multipole
methods (FMM) [8,25,29,33,36]. The method provides significant gains in computation time with O (N log N) operations
only. However, it also presents certain limitations, such as low-order accuracy. It is shown that the relative error for the
numerical solution may be several percent even for the simplest scatterers (see, for example, [7,34]). Moreover, in the
elastic wave scattering, multiple-tree frames are needed due to the existence of both longitudinal and transverse waves
with different wave speeds in one medium. This results in a nonuniform definition for well-separated groups and greatly
complicates the implementation. We refer the readers to [36] for more details in this regard.

The goal of this paper is to present an accurate and efficient boundary integral equation method to solve elastic scat-
tering by large obstacles. A partition of unity and a semi-classical method is employed to evaluate the singular integrals
accurately. Nonsingular integrals are evaluated by high-order quadrature rules with a fast method, wherein each matrix–
vector product is evaluated with O (N4/3 log N) operations. Our acceleration strategy is based on the two face equivalent
source approximation, which reduces the evaluation of nonadjacent interactions in the integral formulations to an evalua-
tion of 3-D Fast Fourier Transform (FFT). It is a nontrivial extension of the acoustic solver in [5] to allow for the evaluation
of the elastic wave scattering in three dimensions. It should be mentioned that additional difficulties arise in the context
of the elastic wave scattering, since compared to the scalar acoustic wave scattering, the vector elastic wave field consists
of a longitudinal and a transverse part propagating at different speeds. Moreover, due to the essential differences in the
singularity of Green’s tensors, instead of dealing with integrals with weakly singular kernels only, here we have to evaluate
integrals with singular and even hypersingular kernels. The resulting fast high-order method attains the accuracy of tradi-
tional boundary element method with a significant lower computational cost, especially when N is large. It is capable of
handling a wide variety of complex large obstacles. In addition, the equivalent sources are solved independently within each
small subdomain, which makes the algorithm suitable for parallelism.

The rest of the paper is organized as follows. Section 2 introduces the mathematical model for the elastic wave scattering
problem, and formulates the boundary integral equations. The numerical method is presented in Section 3, where accurate
evaluation of singular integrals and acceleration for the far interactions of integrations are discussed in details. We show
various numerical results in Section 4 to demonstrate the efficiency of the method, and conclude with some remarks in
Section 5.

2. Problem formulation and boundary integral equations

Let Ω1 denote the body of the obstacle, and Ω2 = R
3\Ω̄1 be its exterior region. The Lamé constants for the regions

inside and outside the obstacle are γi and μi (i = 1,2) respectively, and the densities are ρi (i = 1,2). Assume that an
incident wave field uinc impinges on the obstacle Ω1. The displacement of the scattered wave and that of the wave excited
inside the obstacle satisfy the following elastic wave equations in the frequency domain

1

k2
p,i

∇∇ · ui − 1

k2
s,i

∇ × ∇ × ui + ui = 0, x ∈ Ωi, i = 1,2. (2.1)

Here kp,i = ω
cp,i

and ks,i = ω
cs,i

are wavenumbers for the longitudinal wave (P-wave) and the transverse wave (S-wave) inside

and outside Ω1, respectively. ω is the operating frequency of the elastic wave, and the wave speeds are given by

cp,i =
√

γi + 2μi

ρi
and cs,i =

√
μi

ρi
, i = 1,2.

Across the surface Γ of the obstacle, the displacement u and the traction field t are continuous. That is,

u1 = u2 + uinc, t1 = t2 + tinc on Γ. (2.2)

Here the traction field is given by ti = γ (∇y ·ui(x, y))I+μ(∇yui(x, y)+∇yuT
i (x, y)) ·n(y) (i = 1,2). I is the identity matrix,

and n is unit outward normal to the surface Γ . The definition for tinc follows a similar fashion.
At infinity, the scattered wave u2 satisfies the Sommerfeld radiation condition. More precisely, the displacement u2

admits the Helmholtz decomposition

u2 = ∇φ + ∇ × ψ, (2.3)

where φ and ψ satisfy the following radiation conditions:

lim
r→∞ r

(
∂φ

∂r
− ikp,2φ

)
= 0; (2.4)
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