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We investigate the efficacy of artificial thermal conductivity for shock capturing. The
conductivity model is derived from artificial bulk and shear viscosities, such that stagnation
enthalpy remains constant across shocks. By thus fixing the Prandtl number, more physical
shock profiles are obtained, only on a larger scale. The conductivity model does not contain
any empirical constants. It increases the net dissipation of a computational algorithm but
is found to better preserve symmetry and produce more robust solutions for strong-shock
problems.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Artificial viscosities have been employed for over six decades to capture shocks in high Mach number flows [1]. By
incorporating viscous terms in the momentum and energy equations, shocks can be spread over several grid points, thus
regularizing solutions on discrete meshes. At the molecular scale, shocks have internal structure, which depends not only
on the viscosity but also on the thermal conductivity of the fluid. Typical Prandtl numbers for air and many other gases
near atmospheric conditions are on the order of unity. However, in numerical simulations employing artificial viscosity,
thermal conductivity is often neglected, or else employed in a manner unrelated to viscosity, such that the effective Prandtl
number inside shocks is much greater than unity. This can have unintended consequences, such as “wall heating” [2,3].
The purpose of this Short note is to explore the pros and cons of an artificial conductivity that mimics the relationship of
physical conductivity to physical viscosity. The artificial conductivity is designed to produce numerical shock profiles similar
to physical shock profiles, but rescaled from the molecular realm to the grid scale.

2. Model derivation

For simplicity, consider a one-dimensional shock in a coordinate system in which the shock is stationary. The steady-state
conservation equations can be spatially integrated to yield:

ρu = ρ1u1, (1)

p + ρu2 − τxx = p1 + ρ1u2
1, (2)

ρu
(
h + u2/2

) + qx − uτxx = ρ1u1
(
h1 + u2

1/2
)
, (3)
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where ρ is density, u is velocity, p is pressure, h is enthalpy, τxx is viscous stress, qx is heat conduction and the 1 subscripts
denote upstream supersonic conditions. The enthalpy is

h = e + p/ρ = cp T (4)

where e is thermal energy, T is temperature and cp is constant-pressure specific heat. Eqs. (1), (2) and (3) apply locally
within the shock wave. The Rankine–Hugoniot jump conditions require the stagnation enthalpy to match on either side of
the shock; i.e.,

h2 + u2
2/2 = h1 + u2

1/2, (5)

where the 2 subscripts denote downstream subsonic conditions. Comparison of (3) and (5) suggests that a useful form of
artificial conductivity can be educed by requiring the stagnation enthalpy, h + u2/2, to be constant inside the shock as well
as on either side. This is equivalent to enforcing

dh

dx
+ u

du

dx
= 0 (6)

throughout the shock wave. The Fourier heat flux then becomes

qx ≡ −κ
dT

dx
= − κ

cp

dh

dx
= κ

cp
u

du

dx
, (7)

where κ is thermal conductivity. The Navier–Stokes viscous stress is

τxx ≡
(

β + 4

3
μ

)
du

dx
, (8)

where β is bulk viscosity and μ is shear viscosity. We see from (3) that a constant stagnation enthalpy requires qx = uτxx
or k/cp = (β + 4μ/3). Hence, a promising conductivity model for preserving monotonicity across the shock is

κ = (β + 4μ/3)h/T . (9)

A convenient feature of this model is that it does not involve any empirical constants. Note that for β = 0, (9) is equivalent
to setting the Prandtl number to 3/4 [4]. Lee et al. [5] successfully employed (9) (with β = 0 and a temperature-dependent
μ) in their Direct Numerical Simulations of a shock interacting with isotropic turbulence. Here we explore the efficacy of
(9) for Large-Eddy Simulations (LES), wherein subgrid-scale models may be employed for μ and/or β .

3. Artificial viscosity

For the simulations reported herein, we employ the following grid-dependent viscosity models [6–10]:

μ = 0.002ρ
∣∣∇4

(
S L6

)∣∣, (10)

β = ρ
∣∣∇4(∇ · u)

∣∣L6 H(−∇ · u), (11)

where S is the magnitude of the strain-rate tensor, L is the grid spacing, H is the Heaviside function, ∇4 is the biharmonic
operator and the overbar ( ) denotes a Gaussian filter of width 4L. The factor of 0.002 in (10) was empirically determined
to produce the correct subgrid energy flux for decaying turbulence [7] and the Taylor–Green vortex [8]. The Navier–Stokes
equations are solved in strong conservation form with spatial derivatives computed via tenth-order compact differencing
[11] and temporal integration accomplished via fourth-order Runge–Kutta time-stepping [12]. Since the compact stencils
are purely centered, there is zero numerical dissipation associated with the spatial differencing algorithm. The explicit
Runge–Kutta time-stepping scheme introduces only very slight dissipation [6]. The role of μ and β in LES is to keep the
solution smooth at the grid scale in order to avoid Gibbs phenomenon and other ringing associated with flow discontinuities.

4. Results

As a first test of the conductivity model (9), we consider the spherical Noh implosion [2]. The nondimensional initial
conditions are: ρ = 1, p = 0 and u = unit vector directed toward origin, with an adiabatic index of γ = 5/3 (all test prob-
lems herein use an ideal-gas equation of state). In this problem, an infinite-strength shock expands outward from the origin
at a constant radial velocity of 1/3. In Fig. 1, the results of simulations with and without thermal conductivity are compared
to the exact solution. The artificial thermal conductivity is here seen to reduce wall heating and produce a shock slightly
closer to the exact location. The conductivity model also reduces spurious oscillations behind the shock and helps preserve
spherical symmetry.

As a second test of the artificial conductivity, we consider the spherical Sedov–Taylor–von Neumann blast wave [13–15].
Whereas the Noh problem is purely compressive, the Sedov blast wave is strongly expansive. The initial/flow conditions
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