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This paper presents a data-driven framework for performing uncertainty quantification
(UQ) by choosing a stochastic model that accurately describes the sources of uncertainty in
a system. This model is propagated through an appropriate response surface function that
approximates the behavior of this system using stochastic collocation. Given a sample of
data describing the uncertainty in the inputs, our goal is to estimate a probability density
function (PDF) using the kernel moment matching (KMM) method so that this PDF can
be used to accurately reproduce statistics like mean and variance of the response surface
function. Instead of constraining the PDF to be optimal for a particular response function,
we show that we can use the properties of stochastic collocation to make the estimated
PDF optimal for a wide variety of response functions. We contrast this method with other
traditional procedures that rely on the Maximum Likelihood approach, like kernel density
estimation (KDE) and its adaptive modification (AKDE). We argue that this modified KMM
method tries to preserve what is known from the given data and is the better approach
when the available data is limited in quantity. We test the performance of these methods
for both univariate and multivariate density estimation by sampling random datasets from
known PDFs and then measuring the accuracy of the estimated PDFs, using the known
PDF as a reference. Comparing the output mean and variance estimated with the empirical
moments using the raw data sample as well as the actual moments using the known PDF,
we show that the KMM method performs better than KDE and AKDE in predicting these
moments with greater accuracy. This improvement in accuracy is also demonstrated for the
case of UQ in electrostatic and electrothermomechanical microactuators. We show how our
framework results in the accurate computation of statistics in micromechanical systems.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Uncertainty quantification (UQ) has become a necessary step in the design of most modern engineering systems due to
the need to create robust devices that can tolerate variations in the manufacturing process or in the operating environment.
These variations or uncertainties can be represented by stochastic variables which perturb the deterministic behavior of the
device about the nominal value for which it was designed. The UQ process consists of identifying the relevant uncertain
parameters, assigning appropriate stochastic models to them and quantifying their effect on the final performance of the
device. By leveraging fast and accurate deterministic solvers [1–5], it is possible to perform UQ on the computer so as to
be able to predict the sensitivity of a given design to an applied set of uncertainties. In this paper, we restrict our focus
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to a broad category of devices that are collectively called microelectromechanical systems (MEMS). These devices have
dimensions that are of the order of micrometers and are particularly sensitive to uncertainties that arise due to an inability
to precisely control manufacturing tolerances. Performing UQ for these devices is further complicated by the fact that the
characterization data, which describes the variation in the design parameters, is very often unavailable or sparse in quantity.
Hence, our goal in this paper is to perform UQ in micromechanical devices by developing a framework that can produce
reliable predictions given the limited amount of data describing the uncertainties.

To provide a context for the process of uncertainty quantification, we consider an example that illustrates the issues
involved. Microelectromechanical devices are typically batch-fabricated on silicon wafers through a repeated process of
etching or deposition after masking or exposing selective areas of the wafer. As a result of process variations during batch
processing, there may be significant difference in material and geometric properties of devices fabricated on different parts
of a wafer or even across different wafers. Uncertainty quantification is a valuable tool used by the designer to predict the
effect of these variations on the performance of a nominal device by considering a numerical model of the device where
some of the parameters are uncertain. UQ can be performed by either assuming stochastic models for random parameters
or by fitting models to experimentally measured characterization data. For instance, a set of measurements of the elastic
modulus of the material that forms the structural layer in a microactuator, can be used to estimate a stochastic model for
elastic modulus, which can then be propagated through a numerical model of the device. The designer can then predict the
effect of a particular stochastic parameter on some output quantity of interest, say the mean displacement of the actuator
under an applied stimulus.

There are many different ways of propagating uncertainties through a numerical model of a device. Although traditionally,
sampling-based methods were popular for design optimization in microsystems [6–8], they have been replaced by faster
methods like generalized polynomial chaos [9–11] and more recently, by stochastic collocation [12,13] that do not rely on
statistical sampling. Adaptive improvements to these methods [11,14–16] have further improved the efficiency by adaptively
concentrating the computational effort in the areas where the error is large. With the help of these methods, we can carry
out the step of propagating uncertainties to any arbitrary precision in an efficient manner.

With the advent of these efficient propagation methods, the error in predictions is no longer limited by the precision
of the propagation methods, but rather, by the accuracy of the stochastic models that represent the input uncertainties.
For many sources of randomness, the nature of uncertainty is not known in advance and in the absence of a physical
justification, it is not possible to apply a standard distribution function to represent the uncertainty. Instead we resort
to a data-driven approach, where we estimate a probabilistic model using experimentally measured characterization data.
Although density estimation methods have been popular for a few decades with the advent of kernel density estimation
(KDE) [17–20] and its adaptive modifications [21], these methods are mostly designed for asymptotic convergence when the
size of the data set is large. On the other hand, for the purpose of UQ in MEMS, it is more appropriate to pick methods that
try to preserve what is known from the limited data. We look at moment matching methods [22–24] that try to estimate
PDFs that reproduce the statistics of either the raw data, or more interestingly, the statistics of the system response with
respect to the data.

In this paper, we consider a method called kernel moment matching (KMM) [25], which can be used to estimate PDFs
that accurately reproduce the moments of all functions that lie in a reproducing kernel Hilbert space (RKHS). Since we use
stochastic collocation to construct approximations to the system response function, we leverage this property to identify
a suitable RKHS for this process. We argue that the choice of this RKHS allows the resulting PDF to optimally reproduce
the output statistics of any system modeled using stochastic collocation. This effectively decouples the density estimation
process from the propagation step and allows for the estimation of PDFs without evaluating the actual system response
function. Finally, we demonstrate through numerical examples that this process improves the accuracy of UQ in microme-
chanical systems like electrostatic and electrothermomechanical actuators. We propose that this method can be used in
other engineering systems as well, where the amount of data that is available to characterize uncertainties is limited.

The rest of this paper is organized as follows: Section 2 gives a brief overview of uncertainty propagation, with a specific
focus on stochastic collocation, in order to introduce some notation that will be used in the later section. The main contri-
bution of this paper, which is the construction of stochastic models with limited data, is presented in Section 3, where we
modify existing density estimation methods to suit this goal. Section 4 presents the numerical results, where we consider
density estimation in univariate and multivariate cases in order to demonstrate the advantage of our framework over tradi-
tional approaches. This section also includes MEMS examples to which we applied synthetic uncertainties as well as models
estimated from actual data. We finally present the conclusions in Section 5.

2. Propagation of uncertainties

Before we discuss density estimation, which is the primary focus of this paper, we introduce some concepts related
to uncertainty propagation and the computation of statistics, since we will use these ideas later on to guide the density
estimation process. The most important and computationally intensive step of uncertainty quantification is the process of
propagating uncertainties through a numerical model of a device, which is nothing but a deterministic solver that can
compute the output parameter of interest for a given set of device parameters. The UQ process starts with the identification
of random parameters that act as sources of uncertainty in the model. Once we identify the uncertain parameters that are
relevant, we can call the deterministic solver multiple times with different sets of input parameters in order to get an idea
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