
Journal of Computational Physics 255 (2013) 612–638

Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

Computation of three-dimensional standing water waves

Chris H. Rycroft a,b,c,d,∗, Jon Wilkening b,c

a Department of Physics, University of California, Berkeley, CA 94720, United States
b Department of Mathematics, University of California, Berkeley, CA 94720, United States
c Department of Mathematics, Lawrence Berkeley Laboratory, Berkeley, CA 94720, United States
d School of Engineering and Applied Sciences, Harvard University, MA 02138, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 5 November 2012
Received in revised form 13 July 2013
Accepted 14 August 2013
Available online 27 August 2013

Keywords:
Water waves
Multigrid methods
Optimization

We develop a method for computing three-dimensional gravity-driven water waves, which
we use to search for time-periodic standing wave solutions. We simulate an inviscid,
irrotational, incompressible fluid bounded below by a flat wall, and above by an evolving
free surface. The computations make use of spectral derivatives on the surface, but
also require computing a velocity potential in the bulk, which we carry out using a
finite element method with fourth-order elements that are curved to match the free
surface. This computationally expensive step is solved using a parallel multigrid algorithm,
which is discussed in detail. Time-periodic solutions are searched for using a previously
developed overdetermined shooting method. Several families of large-amplitude three-
dimensional standing waves are found in both shallow and deep regimes, and their
physical characteristics are examined and compared to previously known two-dimensional
solutions.

Published by Elsevier Inc.

1. Introduction

Gravity-driven water waves have been studied for well over a century and have a rich mathematical structure arising
from their nonlinearity. Effects such as resonances [1,2] can have important consequences in ocean engineering, and may
be exploited in the design of maritime structures [3]. One method of investigating the properties of water waves has been
to search for special solutions of the free-surface Euler equations for an inviscid, incompressible fluid such as traveling
and standing waves. One of the earliest examples of this is due to Stokes, who in 1880 postulated that the traveling wave
of maximum height has a crest with an internal angle of 120◦ . This was later investigated numerically [4,5], and proved
analytically [6]. The self-similar asymptotics of the almost-highest traveling wave has also been investigated [7–9].

A similar proposition was given for standing waves by Penney and Price in 1952 [10]. By considering several terms
in a perturbation expansion, they proposed that the largest amplitude standing wave would form a sharp crest with an
internal angle of 90◦ . This prediction was in reasonable agreement with experiments carried out by Taylor [11]. However,
subsequent analytical and numerical studies have reached a variety of different conclusions concerning the precise form of
the geometric singularity the limiting extreme wave should possess [12–19]. Recently, Wilkening [20] has shown that at
higher resolutions, the self-similar sharpening of the crest eventually breaks down, and several families of time-periodic
solutions can be found featuring small-scale oscillations near the crest. This casts doubt on the assumption that a limiting
wave profile exists at all, much less one with 90◦ crests.
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All of the aforementioned studies consider two-dimensional (2D) fluids with one-dimensional surfaces, and it is natural
to ask how these results may generalize to three dimensions. However, the investigation of three-dimensional standing
waves has been comparatively limited. Verma and Keller [21] and Bridges [22] carried out calculations of small-amplitude
waves using perturbation expansions. They were able to examine bifurcations in the families of solutions, and to determine
how the periods of standing waves vary as a function of amplitude. More recently Bryant and Stiassnie [23] and Zhu et
al. [24] have investigated questions of three-dimensional wave stability and evolution while Engsig-Karup et al. [25] have
developed a large-scale parallel code for solving the nonlinear evolution of free-surface waves using a finite difference
framework. None of these works attempt a computation of large-amplitude three-dimensional standing waves.

Searching for three-dimensional standing water waves offers a number of technical challenges. Some methods used to
search for two-dimensional standing waves, such as conformal mapping methods [13,26–29], do not have a generalization
to three dimensions. Furthermore, calculating three-dimensional standing waves requires significantly more computational
resources. Simulating the wave itself requires one more dimension, and the number of degrees of freedom parameterizing
the configuration space over which to search is also larger.

In this paper, we take advantage of improvements in computational power and new algorithms to calculate time-periodic,
three-dimensional gravity-driven waves in an incompressible, inviscid fluid. To search for time-periodic solutions, we make
use of a recently developed methodology where the problem is framed as an overdetermined nonlinear system and a
minimization technique is employed to search a configuration space for solutions that are progressively closer to being
time-periodic. This approach has been used to find time-periodic solutions of the Benjamin–Ono equation [30,31], the vortex
sheet with surface tension [32], and two-dimensional standing water waves [33]. Different minimization methods have
been employed, such as an adjoint-based BFGS approach [34], but here we make use of a variant of the trust-region based
Levenberg–Marquardt minimization. This technique requires computing an entire Jacobian: at a given wave configuration,
it is necessary to determine how the time-periodicity will change in each direction of the configuration space. While this
is expensive to calculate, the minimization requires far fewer iterations than the BFGS approach, and is more amenable
to parallelization. Newton–Krylov methods [35,36] would be an interesting alternative to explore; however, these methods
generally work better in externally driven, dissipative systems [37–39] in which viscosity damps high-frequency oscillations
as the solution evolves.

Computation of irrotational water waves requires time-integrating the height of the free surface and a velocity potential
on the surface. However, at each step, it is also necessary to solve the Laplace equation in the three-dimensional bulk of
the fluid. We have developed a fourth-order finite element discretization of the fluid domain for this purpose, where the
order is measured with respect to the H1 Sobolev norm. The use of finite elements is not typical, and for two-dimensional
studies, boundary integral methods are more common. However in three dimensions, an argument can be made that a finite
element discretization is more suitable, since it requires solving an O (N3) sparse linear system, as opposed to an O (N2)

dense linear system for a boundary integral approach (where N is a typical number of grid points in one dimension). This
difference in complexity is more favorable in two dimensions, where the comparison would be between an O (N2) sparse
system and an O (N) dense system. Naturally, fast algorithms can be used to reduce the computational cost of the boundary
integral approach, but the prefactors are currently very large in three-dimensional implementations of these algorithms [40].

Solving the finite element problem is the most computationally intensive part of our fluid solver. To carry this out, we
have developed a parallel geometric multigrid algorithm, which is presented in detail below. The multigrid algorithm can
also compute solutions for several right-hand sides concurrently, and due to memory bandwidth considerations, this can
be carried out in a fraction of the time required to compute each solution sequentially. This feature is exploited in the
computation of the Jacobian needed in the Levenberg–Marquardt minimization.

In this paper, we present several families of time-periodic solutions that we have found using this methodology. We
examine waves in two depth regimes, one relatively shallow (with fluid depth equal to 1/12 the wavelength) and one
relatively deep (with fluid depth equal to 1/2 the wavelength). The distinction boils down to whether tanh kh is close
to 1, where k is the wave number and h is the depth. Given the difficulties of computation, whereby calculating a single
time-periodic solution can take several days using sixteen threads, the numerical results we present are of relatively low
resolution when compared to two-dimensional studies, and we exploit a large amount of symmetry in order to reduce the
dimension of the configuration space that must be searched. Since little is known about three-dimensional standing waves,
our main aim in this paper is to examine their physical characteristics and compare them to two-dimensional solutions,
paying particular attention to ways in which there may be significant differences. In three dimensions, we are also able
to ask fundamentally new questions about wave morphology that would not be applicable in two dimensions. Our results
cover only a very small part of the possible range of three-dimensional time-periodic solutions that may exist, but serve to
highlight some interesting questions for further study.

2. Methods

2.1. Governing equations

We make use of an (x, y, z) coordinate system that is periodic in the horizontal x and y directions, and where gravity g
points in the negative z direction. We employ non-dimensionalized units, where g = 1 and the horizontal coordinates cover
the range [0,2π). The fluid is bounded below by a flat base at z = 0, and has a free surface given by z = η(x, y, t). The
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