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Perfectly-matched-layer (PML) boundary conditions are derived for finite-difference time-
domain analysis of acoustic waves within piezoelectric crystals. The robustness and
effectiveness of the derived boundary conditions are demonstrated by simulating acoustic
wave propagation in the bismuth germanate material system—a system in which simple
absorbing boundary conditions cause instabilities. An investigation into the stability and
effectiveness of the PML is then presented in terms of the PML thickness and absorption
profile. A range of optimised absorption profiles were determined by finding the maximum
permissible absorption within the stability limit of the system. In the optimised case, the
form of the absorption profile had little influence on the effectiveness of the PML. However,
in the unoptimised case the linearly increasing absorption profile was found to be the most
effective.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The finite-difference time-domain (FDTD) method, introduced by Yee [1] in 1966 for simulating Maxwell’s equations, was
first applied to the acoustic wave equations of motion in piezoelectric crystals by Smith et al. in 2002 [2]. Since the solutions
of both these systems involve propagating waves, the method of truncating an otherwise infinite simulation domain around
some region of interest (ROI) is critical in stopping reflections off these artificial boundaries interfering with the physics
being investigated. In 2006, Chagla et al. [3] added absorbing boundary conditions to the acoustic wave problem by adding
an absorbing layer with a quadratically increasing damping coefficient to dissipate the energy from any oscillations which
reach the boundaries. Although this method worked well in some cases, Chagla et al. showed that it does not remain stable
for all material systems.

Since it was first introduced by Berenger in 1994 [4], the perfectly-matched layer (PML) has been used extensively
in FDTD simulations of electromagnetic waves. It may be viewed as an analytic continuation of spatial variables onto the
complex plane such that any oscillating solution that enters the PML will be transformed into an oscillating component with
an exponentially decaying envelope [5]. Despite the ongoing interest in development of the PML [6–9] in electromagnetic
simulations as well as its application in both elastodynamics [10] and fluid dynamics [11], the PML has not been applied to
the simulation of acoustic waves in piezoelectric crystals.

In this work, we derive PML boundary conditions for the acoustic wave equations of motion within a piezoelectric crystal
by applying a complex coordinate stretching of spatial variables in the frequency domain. The boundary conditions are then
transformed back to the time domain and discretised using the same interlaced mesh used by Smith et al. such that both the
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ROI and PMLs may be solved using the same FDTD algorithm, thereby avoiding any increase in computational complexity in
the simulation.

The robustness and effectiveness of our PML implementation is demonstrated in the following section, and is shown to
be stable for a bismuth germanate material system in which absorbing boundary conditions fail [3]. This is followed by a
discussion of the stability criteria for the discretised PML and a quantitative analysis of their effectiveness with respect to
their operating parameters as well as optimisation of those parameters.

2. Derivation of PML boundaries for the acoustic wave equations of motion

The equation of motion for an acoustic wave in a piezoelectric crystal is

ρüi = ∂σi j

∂x j
for i, j = 1,2,3, (1)

where u is the displacement of a particle in three orthogonal directions x1, x2 and x3, and

σi = Cijε j + eT
ik

∂φ

∂xk
for i, j = 1,2, . . . ,6; k = 1,2,3, (2)

is Hooke’s law for piezoelectric crystals, where σ is the stress, C is the elastic constant tensor, eT is the transpose of the
piezoelectric constant tensor, φ is the induced piezoelectric potential inside the crystal structure and ε is the strain inside
the crystal which is defined as

εi = ∂ui

∂xi
for i = 1,2,3, (3)

ε4 = ∂u2

∂x3
+ ∂u3

∂x2
, (4)

ε5 = ∂u1

∂x3
+ ∂u3

∂x1
, (5)

ε6 = ∂u1

∂x2
+ ∂u2

∂x1
. (6)

Note that the subscript of σ has changed from tensor notation in (1) to matrix notation in (2), as in Ref. [12], so that both
the wave equation and Hooke’s law may be expressed using the Einstein summation convention.

The computational effort required for the simulation is greatly reduced by assuming that the acoustic waves are of
Rayleigh wave type, and therefore have no variation in the direction aligned parallel to the propagating wave front. Taking
this direction to be along the x2-axis, all terms containing ∂

∂x2
may be set to zero. This reduces the number of independent

terms on the RHS of (1) to two, or in the summation notation j = 1,3, and in (2) the number of independent equations
reduces from six to five as σ2 is not used, so in the summation convention i = 1,3,4,5,6. The summations for the equations
of motion and Hooke’s law remain the same throughout the rest of this work so will no longer be shown. While the
variation in the x2 direction is assumed to be zero the displacement in this direction, u2, is not zero and therefore cannot be
discounted. The problem may be simplified further if the solution is restricted to one particular crystal class such that many
of the terms in (2) become zero due to symmetries within the crystal’s unit cell. In the following derivation however, all
terms within (2) have been included to make PMLs applicable to all crystal classes and therefore to be material independent.

Since the acoustic velocity inside a crystal is slow compared to the piezoelectric response, the induced charge displace-
ment from the acoustic wave, ρ , is assumed to be adiabatic and takes the form

ρ = −∇i · eijε j for i = 1,3; j = 1,3,4,5,6, (7)

therefore allowing φ to be found by solving Poisson’s equation

∇ · ε∇φ = −ρ. (8)

In order to implement PML boundary conditions we split the second-order time differential by introducing an auxiliary
field, v, such that (1) becomes

ρ
∂ui

∂t
= ∂vij

∂x j
, (9)

where the time differential of v is defined as

∂vi

∂t
= σi = Cijε j + eT

ik
∂φ

∂xk
. (10)

Transforming to the frequency domain, such that u(t) → U(ω) and v(t) → V(ω), we obtain
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