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We present a novel computational framework for diffusive–reactive systems that satisfies
the non-negative constraint and maximum principles on general computational grids.
The governing equations for the concentration of reactants and product are written in
terms of tensorial diffusion–reaction equations. We restrict our studies to fast irreversible
bimolecular reactions. If one assumes that the reaction is diffusion-limited and all chemical
species have the same diffusion coefficient, one can employ a linear transformation to
rewrite the governing equations in terms of invariants, which are unaffected by the
reaction. This results in two uncoupled tensorial diffusion equations in terms of these
invariants, which are solved using a novel non-negative solver for tensorial diffusion-type
equations. The concentrations of the reactants and the product are then calculated from
invariants using algebraic manipulations. The novel aspect of the proposed computational
framework is that it will always produce physically meaningful non-negative values for
the concentrations of all chemical species. Several representative numerical examples are
presented to illustrate the robustness, convergence, and the numerical performance of
the proposed computational framework. We will also compare the proposed framework
with other popular formulations. In particular, we will show that the Galerkin formulation
(which is the standard single-field formulation) does not produce reliable solutions, and the
reason can be attributed to the fact that the single-field formulation does not guarantee
non-negative solutions. We will also show that the clipping procedure (which produces
non-negative solutions but is considered as a variational crime) does not give accurate
results when compared with the proposed computational framework.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction and motivation

Mixing of chemical species across plume boundaries has a major influence on the fate of reactive pollutants in subsurface
flows. In many practical cases, the intrinsic rate of reaction is fast compared with other relevant time scales and hence the
reaction may be assumed instantaneous (e.g., see Refs. [1,2]). Mixing is commonly modeled as an anisotropic Fickian diffu-
sion process, with the effective diffusion coefficient aligned with the flow velocity (termed the longitudinal hydrodynamic
dispersion coefficient) being much larger than the transverse components. Moreover, the small-scale spatial variability of
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permeability in real aquifers leads to highly heterogeneous velocity fields, which means that the principal directions of the
diffusion tensor will vary in space and will not be aligned with the numerical grid. It has also been demonstrated that
accurate treatment of dispersive mixing is crucial for computing the large-time spatial extent of the contaminant plume,
which is a very important measure of the contaminant risk and thus of great interest to government regulators and the
general public (e.g., see Ref. [3]). It is well-known that heterogeneity and anisotropy lead to irregular plume boundaries,
which enhance mixing-controlled reactions through increasing the interfacial area of the plume. It is, therefore, crucial to
capture heterogeneity and anisotropy in order to properly model reactive transport in hydrogeological systems.

One can capture heterogeneity computationally through adequate mesh refinement or by employing multiscale methods
(for example, see Refs. [4–7]). Although simulating flow and transport in highly heterogeneous porous media is still an
active area of research, we shall not address this aspect in this paper. We shall employ meshes that are fine enough to be
able to resolve heterogeneity. This paper focuses on resolving anisotropy to be able to accurately predict the fate of chemical
species. We shall model the spatial and temporal variation of chemical species through diffusion–reaction equations.

Diffusive–reactive equations arise naturally in modeling biological [8,9], chemical [10,11], and physical [12] systems. The
areas of application of diffusion–reaction systems range from contaminant transport [13], semiconductors [14], combustion
theory [15] to biological population dynamics [16]. It is well-known that these types of equations can exhibit complex and
well-ordered structures/patterns [12,17]. A lot of effort has also been put into the mathematical analysis of diffusive–reactive
systems. Many qualitative mathematical properties (e.g., comparison principles, maximum principles, the non-negative con-
straint) have been obtained for these systems [18–20]. A detailed discussion on mathematical aspects of diffusive–reactive
systems is beyond the scope of this paper and is not central to the present study.

1.1. Fast bimolecular reactions

The main aim of this paper is to present a robust computation framework to obtain physically meaningful numerical solutions for
diffusive–reactive systems. We shall restrict to bimolecular fast reactions for which the rate of reaction is controlled by diffusion of the
two chemical species. Fast irreversible bimolecular diffusion–reaction equations come under the class of diffusion-controlled
reactions [21,22]. Examples of such systems include ionic reactions occurring in aqueous solutions such as acid–base re-
actions [23,24], polymer chain growth kinetics [25], catalytic reactions [26] and enzymatic reactions [27]. In such systems
the formation of the product is much faster than the diffusion of the reactants. In this paper we are only concerned about
homogeneous reactions (i.e., the reactants are all in the same phase). Modeling diffusive–reactive systems in which reac-
tions are heterogeneous (i.e., the reactants are in different phases) by incorporating the surface effects of the reactants (for
example, see Refs. [28–34]) is beyond the scope of the present paper but will be considered in our future works.

Some main challenges in solving a system of diffusion–reaction equations are as follows:

(a) Anisotropy: Developing robust computational frameworks for highly anisotropic diffusive–reactive systems is certainly
gaining prominence. However, caution needs to be exercised in selecting numerical formulations to avoid negative
values for the concentration of the chemical species. Many popular numerical schemes such as the standard single-field
formulation [35], the lowest order Raviart–Thomas formulation [36], and the variational multiscale mixed formulation
[37,38] give unphysical negative values for the concentration even for pure diffusion equations [39]. Furthermore, mesh
refinement (either h-refinement [40] or p-refinement [41]) will not overcome the problem of negative values for the
concentration. Keeping in mind about these concerns and developing a robust framework for diffusive–reactive systems
is a challenging task.

(b) Nonlinearity: The equations governing for these systems are coupled and nonlinear (see Eqs. (2.2a)–(2.2d), which are
presented in a subsequent section). The solutions to these diffusive–reactive systems can exhibit steep gradients [42],
and a robust numerical solution procedure should be able to handle such features.

(c) Scale dependence: These types of systems can exhibit multiple spatial and temporal scales. For example, the diffusion
process can be much slower than the chemical reactions. Therefore, the numerical techniques should be able to resolve
these multiple scales. Compared to fast reactions, different solution strategies are required for moderate and slow reac-
tions, which are typically easier to solve due to smaller gradients. Construction of adaptive numerical techniques that
take the advantage of specific reaction kinetics and simultaneously satisfying the underlying mathematical properties is
still in its infancy.

(d) Bifurcations, physical instabilities and pattern formations: These systems are capable of exhibiting physical instabilities, and
even chaos [18].

We shall overcome the first challenge by employing a novel non-negative solver that ensures physically meaningful non-
negative values for the concentration of chemical species. We employ a transformation of variables, which will overcome
the second and third challenges. We solve problems that do not exhibit physical instabilities and chaos. Although consider-
able progress has been made in developing numerical solutions of diffusive–reactive systems [43,44], none of these studies
addressed the difficulties in obtaining non-negative solutions especially under strong anisotropy, which is the main focus of
this paper. The following systematic approach has been employed to achieve the desired goal. The reactions are assumed to
be fast and bimolecular. The concentration of reactants and product are governed by tensorial diffusion–reaction equations,
and by an appropriate stoichiometric relationship. The three coupled tensorial diffusion–reaction equations are rewritten in
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