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In this paper, we show how to accurately estimate the local truncation error of partial
differential equations in a quasi-a priori way. We approximate the spatial truncation error
using the τ -estimation procedure, which aims to compare the discretisation on a sequence
of grids with different spacing. While most of the works in the literature focused on
an a posteriori estimation, the following work develops an estimator for non-converged
solutions. First, we focus the analysis on one- and two-dimensional scalar non-linear test
cases to examine the accuracy of the approach using a finite difference discretisation.
Then, we extend the analysis to a two-dimensional vectorial problem: the Euler equations
discretised using a finite volume vertex-based approach. Finally, we propose to analyse a
direct application: τ -extrapolation based on non-converged τ -estimation. We demonstrate
that a solution with an improved accuracy can be obtained from a non-a posteriori error
estimation approach.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

In the past decades, due to the increasing demand for complex fluid flow simulations, great effort has been done by the
Computational Fluid Dynamics (CFD) community in order to increase the accuracy and reduce the calculation costs. It is
now well understood that numerical errors play a crucial role in the balance between accuracy and computational time.

The errors committed in solving numerically a set of Partial Differential Equations (PDE) can be broadly classified into
three categories:

• Discretisation errors (DE). These errors arise when the mathematical problem is solved numerically on discrete domains.
The discretisation error is defined as the difference between the exact solution to the PDE and the exact solution to the
discretised PDE.

• Truncation errors (TE). They act as a source for the DE through the discretisation error transport equation (DETE, see Roy
[1]). The truncation error is defined as the difference between the discrete and continuous PDE both applied to the
exact solution of the mathematical model.

• Iteration errors (IE). Iterative error is present in a solution when an iterative procedure is used to solve the discrete
equations. The iteration error is defined as the difference between the exact solution to the discrete equations and the
solution at the current iteration.
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The estimation of the numerical error provides valuable information that can be used in different applications. The trun-
cation/discretisation errors are directly related to the mesh distribution, and thus, a careful estimation might be employed in
mesh generation/mesh adaptation. These estimations might also be used to increase the accuracy of the partial differential
equation solution. However, the accurate evaluation of numerical errors is a challenging task.

The most commonly used strategy to study discretisation errors is based on Richardson extrapolation [2]. Richardson
extrapolation is derived from a power series expansion of the numerical solution expanded about the exact solution to the
PDE, thus, it assumes a smooth solution in the asymptotic range. The success of Richardson extrapolation [3–8] is due to
its generality as it can be applied to any set of PDE independently of the numerical scheme. Because it is an a posteriori
error estimator, the method is not code intrusive and relatively easy to implement. However, this approach requires the
computation of at least three numerical solutions, on grid of different spacing, in order to obtain the expression of the
leading term of the Taylor series. Therefore, this makes this method hardly suitable for complex three-dimensional industrial
applications. Another family of discretisation error estimators comes from the solution of auxiliary equations like the DETE
(Shih [9]) or the adjoint equations [10,11]. While these methods proved to be very reliable estimators, they however suffer
from a very high computational cost and are code intrusive.

The analysis of truncation error can be done in two manners. First, by deriving analytically the Taylor series expan-
sions [12–16]. This approach allows for an a priori analysis and gives very valuable information on the quality of the
mesh and on the accuracy of the numerical scheme. However, the complexity of the related expressions for general three-
dimensional non-linear problems together with the dependence on the numerical scheme have prevented the expansion
of this approach. The second way of studying the truncation error arised from the multigrid theory [5] and is known as
τ -estimation. Given an exact (converged) solution to the discrete PDE, this method relies on the evaluation of the discrete
PDE operator on a coarser mesh [4,17–20]. Because of its strong relation to mesh quality and accuracy, a careful estimation
can yield an increase in the order of the scheme (procedure known as τ -extrapolation) and/or a reliable mesh adaptation
indicator [21,22]. However, truncation error estimation by τ -estimation has always been used a posteriori, from converged
solutions.

Here, we propose to extend the work of Bernert [18], Fulton [19] and Fraysse et al. [20,23], who focused their study on
converged solutions, to non-converged solutions. We develop a truncation error estimator and derive all of the necessary
conditions to ensure accuracy. We discuss the conditions for an accurate estimation as follows: the order of the transfer
operators acting in the truncation error estimator formula as a function of the order of the numerical scheme, the influence
of distortion and the influence of the iteration error on the accuracy of the estimation. In a second step, a τ -extrapolation
formula is presented accounting for the above conditions. Whereas non-converged τ -estimation/τ -extrapolation are per-
formed on one- and two-dimensional scalar equations using a finite difference method, a concrete application using the
finite volume vertex-based DLR TAU-Code [24] for the Euler equations is subsequently presented.

The present paper is organised as follows. First, we derive in Section 2 the mathematical formulation and the conditions
to be fulfilled for an accurate τ -estimation/τ -extrapolation for non-converged solutions. In Sections 3.1 and 3.2, we study
the accuracy of the τ -estimation/τ -extrapolation for non-converged solutions of one-dimensional and two-dimensional ref-
erence problems. We present the difficulties associated with this methodology as well as different solutions. Finally, in
Section 4, we address more realistic configurations with Euler equations on quadrilateral- and triangle-based grids.

2. Problem formulation

Let us consider the discretisation of a partial differential equation on a grid Ωh indexed by a mesh size parameter h of
the following form:

Ah(uh) = f h := Ih f (1)

where, Ih represents a continuum-to-grid Ωh transfer for the specified f (e.g., pointwise restriction) and uh represents
the converged numerical solution. The discretisation error εh and the local truncation error τ h corresponding to Eq. (1) are
defined as follows:

εh = Ihu − uh

τ h = Ah(Ihu
) − IhA(u) (2)

In addition to the discrete equation Eq. (1) and considering a full approximation storage multigrid algorithm [5], the
coarse grid equation may be written as follows:

AH(
ûH) = AH(

ÎH
h ũh) + IH

h

(
f h −Ah(ũh)), ûH ≈ ÎH

h

(
εh

it + ũh) (3)

corresponding to the discrete equation on a coarser mesh Ω H , with a mesh ratio of ρ = h/H < 1. In Eq. (3), ũh is the
current approximation of the solution (relaxed on the fine grid and not necessarily converged), εh

it = uh − ũh is the fine grid

iteration error, for which its high frequencies must be smoothed, Î H
h represents the fine to coarse transfer operator of the

solution, whereas I H
h represents the fine to coarse transfer operator of the residual. Note that these restriction operators are

not necessarily identical. Similarly, introducing the relative truncation error τ H
h , Eq. (3) may be written as follows:
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