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The wave propagation (spectral) properties of high-order Residual-Based Compact (RBC)
discretizations are analyzed to obtain information on the evolution of the Fourier modes
supported on a grid of finite size. For these genuinely multidimensional and intrinsically
dissipative schemes, a suitable procedure is used to identify the modified wave number
associated to their spatial discretization operator, and their dispersive and dissipative
behaviors are investigated as functions of a multidimensional wave number. For RBC
schemes of higher orders (5 and 7), both dissipation and dispersion errors take very
low values up to reduced wave numbers close to the grid resolvability limit, while
higher frequencies are efficiently damped out. Thanks to their genuinely multidimensional
formulation, RBC schemes conserve good dissipation and dispersion properties even for
flow modes that are not aligned with the computational grid. Numerical tests support
the theoretical results. Specifically, the study of a complex nonlinear problem dominated
by energy transfer from large to small flow scales, the inviscid Taylor–Green vortex flow,
confirms numerically the interest of a well-designed RBC dissipation to resolve accurately
fine scale flow structures.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Residual-Based Compact (RBC) schemes have been developed from some time now [1–4] for computing multidimen-
sional, inviscid and viscous, steady and unsteady, compressible flows. Differently from standard numerical schemes that
approximate space derivatives independently in each space direction, RBC schemes seek for a compact approximation of the
complete residual r, i.e. the sum of all derivatives in the governing equations. Because of this feature, RBC schemes belong
to the group of so-called genuinely multidimensional schemes such as the fluctuation splitting schemes [5,6] or the Resid-
ual Distribution schemes [7,8]. This makes a deep difference with respect to other compact schemes [9–12] based on the
recursive inversion of Pade operators per each space dimension. Moreover, RBC schemes contain a well-designed intrinsic
dissipation, also built on derivatives of the residual r, that becomes high-order accurate as r tends to 0. In the recent work
[13], a truncation error analysis has been carried out in the nonlinear multidimensional case to identify the high-order
dissipation operator associated to a general RBC scheme and to obtain a necessary and sufficient condition (referred to as
the χ -criterion) ensuring dissipation for any 2D or 3D situation. Numerical experiments [1–4,13,14] show that dissipative
RBC schemes capture flow discontinuities without need for flux limiters or artificial viscosity.

The aim of the present paper is to move a further step toward the understanding of the numerical properties of
high-order RBC discretizations, and precisely of the internal representation of solution modes provided by these schemes.
Truncation error analysis provides information about the asymptotic behavior of numerical schemes in the limit of vanishing
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mesh size. Namely, for stable methods and for smooth flow problems, it allows to conclude on the convergence rate of the
global error. Furthermore, it may be used to establish, as done in [13], the dominant (dissipative or dispersive) nature of
the numerical scheme, according to the kind of derivatives (even or odd) of the unknown field featuring in the leading
error term. Nevertheless, this type of analysis does not provide all possible information on the actual error introduced by
the scheme on finite computational grids, and precisely on the cutoff frequencies associated to the numerical representa-
tion of the solution. For this purpose, the wave propagation (spectral) properties of the scheme can be studied to obtain
information on the evolution of the Fourier modes of the computed field that are supported on a given grid of finite size.
The spectral behavior of high-order schemes has been extensively investigated in the past, namely in view of their appli-
cation to aeroacoustics [15,16] and Large-Eddy Simulation [16,17]. Specifically, a careful analysis of the approximation of
convective terms in the governing equations is in order for the numerical simulation of high-Reynolds compressible flows,
since it is likely to introduce dispersion and diffusion errors that affect the numerical representation of a given solution
mode. For directional schemes, spectral analysis is often applied to a single space derivative taken apart [15–17]. Moreover,
since many high-order schemes have a purely centered nature, only the dispersion errors are taken into account, numeri-
cal damping being introduced a posteriori via the addition of some form of artificial dissipation or explicit filtering, whose
transfer function (rate of damping associated to a given wave number) is investigated separately.

This kind of disjoint analysis is not applicable to RBC schemes because of their genuinely multidimensional and intrin-
sically dissipative nature. For these schemes, an analysis of the properties of the multidimensional spatial discretization
operator as a whole is required. In this case, the dispersive and dissipative behavior depends on a multidimensional wave
number (or on the local advection direction). Since our main goal is to investigate the spectral properties of numerical
approximations for the convective terms, in the following we restrict our analysis to inviscid compressible flow problems.

The paper is organized as follows. In Section 2 we briefly recall the general design principle of RBC spatial discretization
for convective problems, then we focus on selected RBC schemes of third-, fifth- and seventh-order of accuracy. In Section 3
we derive the spectral counterparts of the RBC schemes under investigation and discuss their dissipation and dispersion
properties. Section 4 presents some numerical experiments supporting the preceding theoretical analysis, including the
highly nonlinear Taylor–Green vortex flow [18]. Finally, conclusions of the study are drawn in Section 5.

2. High-order RBC schemes

In this section, we recall the design principles of RBC approximations of the space derivatives for a hyperbolic system
of conservation laws. For brevity and clarity, we will focus on two-dimensional problems even if there is no restriction for
extending the analyses below to multidimensional hyperbolic problems. At this stage, we treat time derivatives exactly, i.e.
we focus on semi-discrete approximations in space.

2.1. Concept of residual-based scheme

Let us consider an initial-value problem for the hyperbolic system of conservation laws:

wt + fx + g y = 0 on R
2 ×R

+ (1)

with initial conditions

w(x, y,0) = w0(x, y)

where t is the time, x and y are Cartesian space coordinates, w is the state vector and f = f (w), g = g(w) are flux com-
ponents depending smoothly on w . The Jacobian matrices of the flux are denoted A = d f /dw and B = dg/dw . System (1)
is approximated in space on a uniform mesh (x j = jδx, yk = kδy) with steps δx and δy of the same order of magnitude, say
O(h), using the basic difference and average operators:

(δ1 v) j+ 1
2 ,k = v j+1,k − v j,k, (δ2 v) j,k+ 1

2
= v j,k+1 − v j,k,

(μ1 v) j+ 1
2 ,k = 1

2
(v j+1,k + v j,k), (μ2 v) j,k+ 1

2
= 1

2
(v j,k+1 + v j,k)

where j and k are integers or half integers.
A residual-based scheme can be expressed in terms of approximations of the exact residual:

r := wt + fx + g y . (2)

More precisely, such a scheme is of the following form:

(r̃0) j,k = d̃ j,k (3)

where r̃0 is a space-centered approximation of r called the main residual and d̃ is a residual-based dissipation term defined
in terms of first-order differences of the residual as:
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