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We first consider a regular fractional Sturm–Liouville problem of two kinds RFSLP-I
and RFSLP-II of order ν ∈ (0,2). The corresponding fractional differential operators in
these problems are both of Riemann–Liouville and Caputo type, of the same fractional
order μ = ν/2 ∈ (0,1). We obtain the analytical eigensolutions to RFSLP-I & -II as non-
polynomial functions, which we define as Jacobi poly-fractonomials. These eigenfunctions
are orthogonal with respect to the weight function associated with RFSLP-I & -II. Subse-
quently, we extend the fractional operators to a new family of singular fractional
Sturm–Liouville problems of two kinds, SFSLP-I and SFSLP-II. We show that the primary
regular boundary-value problems RFSLP-I & -II are indeed asymptotic cases for the
singular counterparts SFSLP-I & -II. Furthermore, we prove that the eigenvalues of the
singular problems are real-valued and the corresponding eigenfunctions are orthogonal.
In addition, we obtain the eigen-solutions to SFSLP-I & -II analytically, also as non-
polynomial functions, hence completing the whole family of the Jacobi poly-fractonomials.
In numerical examples, we employ the new poly-fractonomial bases to demonstrate the
exponential convergence of the approximation in agreement with the theoretical results.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The Sturm–Liouville theory has been the keystone for the development of spectral methods and the theory of self-adjoint
operators [1]. For many applications, the Sturm–Liouville Problems (SLPs) are studied as boundary-value problems [2]. How-
ever, to date mostly integer-order differential operators in SLPs have been used, and such operators do not include any
fractional differential operators. Fractional calculus is a theory which unifies and generalizes the notions of integer-order
differentiation and integration to any real- or complex-order [3–5].

Over the last decade, it has been demonstrated that many systems in science and engineering can be modeled more ac-
curately by employing fractional-order rather than integer-order derivatives [6–8]. In most of the fractional Sturm–Liouville
formulations presented recently, the ordinary derivatives in a traditional Sturm–Liouville problem are replaced with frac-
tional derivatives, and the resulting problems are solved using some numerical schemes such as Adomian decomposition
method [9], or fractional differential transform method [10], or alternatively using the method of Haar wavelet operational
matrix [11]. However, in such numerical studies, round-off errors and the pseudo-spectra introduced in approximating the
infinite-dimensional boundary-value problem as a finite-dimensional eigenvalue problem prohibit computing more than a
handful of eigenvalues and eigenfunctions with the desired precision. Furthermore, these papers do not examine the com-
mon properties of Fractional Sturm–Liouville Problems (FSLPs) such as orthogonality of the eigenfunctions of the fractional
operator in addition to the reality or complexity of the eigensolutions.
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Establishing the aforementioned fundamental properties for FSLPs is very important in establishing proper numerical
methods, e.g. the eigensolutions of the RFSLP may be complex [12]. To this end, some results have been recently provided
in [13,14], where the fractional character of the problem has been considered through defining a classical Sturm–Liouville
operator, extended by the term that includes a sum of the left- and right-sided fractional derivatives. More recently, a Reg-
ular Fractional Sturm–Liouville Problem (RFSLP) of two types has been defined in [15], where it has been shown that the
eigenvalues of the problem are real, and the eigenfunctions corresponding to distinct eigenvalues are orthogonal. However,
the discreteness and simplicity of the eigenvalues have not been addressed. In addition, the spectral properties of a regular
FSLP for diffusion operator have been studied in [16] demonstrating that the fractional diffusion operator is self-adjoint. The
recent progress in FSLPs is promising for developing new spectral methods for fractional PDEs, however, the eigensolutions
have not been obtained explicitly and no numerical approximation results have been published so far.

The main contribution of this paper is to develop a spectral theory for the Regular and Singular Fractional Sturm–Liouville
Problems (RFSLP & SFSLP) and demonstrate its utility by constructing explicitly proper bases for numerical approximations
of fractional functions. To this end, we first consider a regular problem of two kinds, i.e., RFSLP-I & -II. Then, we obtain the
analytical eigensolutions to these problems explicitly for the first time. We show that the explicit eigenvalues to RFSLP-I & -II
are real, discrete and simple. In addition, we demonstrate that the corresponding eigenfunctions are of non-polynomial form,
called Jacobi poly-fractonomials. We also show that these eigenfunctions are orthogonal and dense in L2

w [−1,1], forming a
complete basis in the Hilbert space. We subsequently extend the regular problem to a singular fractional Sturm–Liouville
problem again of two kinds SFSLP-I & -II, and prove that the eigenvalues of these singular problems are real and the
eigenfunctions corresponding to distinct eigenvalues are orthogonal; these too are computed analytically. We show that the
eigensolutions to such singular problems share many fundamental properties with their regular counterparts, with the ex-
plicit eigenfunctions of SFSLP-I & -II completing the family of the Jacobi poly-fractonomials. Finally, we complete the spectral
theory for the regular and singular FSLPs by analyzing the approximation properties of the eigenfunctions of RFSLPs and
SFSLPs, which are employed as basis functions in approximation theory. Our numerical tests verify the theoretical exponen-
tial convergence in approximating non-polynomial functions in L2

w [−1,1]. We compare with the standard polynomial basis
functions (such as Legendre polynomials) demonstrating the fast exponential convergence of the poly-fractonomial bases.

In the following, we first present some preliminary of fractional calculus in Section 2, and we proceed with the theory
on RFSLP and SFSLP in Sections 3 and 4. In Section 5 we present numerical approximations of selected functions and we
summarize our results in Section 6.

2. Definitions

Before defining the boundary-value problem, we start with some preliminary definitions of fractional calculus [4]. The
left-sided and right-sided Riemann–Liouville integrals of order μ, when 0 < μ < 1, are defined, respectively, as
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where Γ represents the Euler gamma function. The corresponding inverse operators, i.e., the left-sided and right-sided
fractional derivatives of order μ, are then defined based on (1) and (2), as
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Furthermore, the corresponding left- and right-sided Caputo derivatives of order μ ∈ (0,1) are obtained as
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