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An adaptive finite volume method for 2D steady Euler equations on unstructured grids
is proposed. The framework of the finite volume method for the steady Euler equations
follows the one in the paper [G.H. Hu, R. Li, and T. Tang, A robust WENO type finite volume
solver for steady Euler equations on unstructured grids, Commun. Comput. Phys. 9 (2011)
627–648]. In this paper, we introduce the mesh adaptive methods to improve the above
numerical method. The features of this work include: (i) different reconstruction stencils
for WENO reconstruction are discussed in detail, including their performance on the
convergence of steady state solutions and on the application of h-adaptive methods, and (ii)
an effective indicator for generating quality nonuniform mesh is proposed, which is based
on the entropy production. The improvement of the numerical methods is demonstrated
by plenty of numerical examples.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The steady Euler equations are very important in Computational Aerodynamics. For example, when an aircraft is in its
cruise state, the distributions of physical variables such as density, velocity, and pressure do not change with the time
evolution. In this case, the steady Euler equations serve as the governing equations to depict such cruise state. Since the
nonlinearity of the Euler equations and the complexity of the configuration of the problems, it is generally impossible to
obtain the analytical solutions for the Euler equations. Consequently, an efficient numerical method becomes crucial for the
study of the Euler equations.

The 2D inviscid steady Euler equations are given by

∇ · F (U) = 0 (1)

where

U =
⎡
⎢⎣

ρ
ρu
ρv
E

⎤
⎥⎦ , F (U) =

⎡
⎢⎣

ρu ρv
ρu2 + p ρuv

ρuv ρv2 + p
u(E + p) v(E + p)

⎤
⎥⎦ .

In the above equations, ρ , �u = [u, v]T , p, E stand for the density, the velocity, the pressure, and the energy, respectively.
F (U) denotes the inviscid flux. The equation of state below is used to close the system,
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E = p

γ − 1
+ 1

2
ρ
(
u2 + v2),

where γ = 1.4 stands for the ratio of specific heats of the prefect gas.
There have been many papers on WENO schemes for the Euler equations (1), see, e.g., [24,25,21,8,10,28,9,19]. In [14],

a robust finite volume method is proposed for (1) on unstructured grids. In that paper, the steady Euler equations are lin-
earized by the Newton methods. The finite volume methods are employed for the spatial discretization, which numerically
guarantees the conservative property of the physical variables. To prevent the nonphysical oscillation and keep the numeri-
cal accuracy simultaneously, a WENO reconstruction method for the linear reconstruction is developed. Since the temporal
terms in the steady equations are absent, the derived system needs to be regularized. Unlike the traditional methods which
add the pseudo-time terms on the steady equations, the authors in [14] use the norm of the local residual in each governing
cell for the regularization, which works very well in the implementation. To efficiently solve the final linear system, a ge-
ometrical multi-grid method is designed there, and the block lower–upper symmetric Gauss–Seidel iteration is used as the
smoother. With this numerical framework, the desired convergence order is observed successfully in the convergence test,
and the residual of the system is reduced to the machine accuracy efficiently for the problems with subsonic and transonic
configurations. More impressively, the numerical convergence of the method seems like not sensitive to the selection of the
parameters in the algorithm, which makes the method more suitable for the simulation with practical configurations.

In this paper, we improve the numerical method proposed in [14] by introducing the mesh adaptive methods. To reach
an accurate numerical solution, global refining the mesh is a straightforward way. Specially for the simulation with a shock
in the flow field, since the position of the shock is unknown in advance, it seems like that an initial uniform mesh and
global refinement is the only method to catch the shock. The mesh adaptive methods give us a second choice, which could
also be an economical choice. The adaptive methods mark the trouble region in the computational domain, and implement
the mesh refinement just in the trouble region. With this method, computational resource is effectively saved, while a
quality numerical solution can be expected at the same time.

There are mainly two kinds of mesh adaptive methods. One is r-adaptive methods which relocates the mesh grids
without changing the number of mesh grids. The other one is h-adaptive methods which locally refine and/or coarsen the
mesh grids. The r-adaptive methods have been widely used in, for example, computational fluid dynamics [23]. We refer
to [15] and references therein for more details and applications of the r-adaptive methods. It is worth mentioning that for
the r-adaptive methods which are based on the harmonic maps, it is nontrivial to adopt such r-adaptive methods for the
numerical experiments in this paper. As we know, to guarantee the existence and uniqueness of the harmonic map, the
domain we used in the simulation needs to be a simply connected region, which is not the case in this paper. To avoid this
problem, the domain decomposition methods could be one reasonable choice.

Since their success in electronic structure calculations [3,26], computational electromagnetics [4,2], etc., we use the
h-adaptive methods in this paper to improve the numerical method in [14]. To realize the h-adaptive methods in an effi-
cient way, a quality data structure and a well-designed error indicator are necessary. The data structure is used to flexibly
handle the mesh local refinement and/or coarsening, and the error indicator marks the trouble region in the computational
domain. In this paper, we will follow [16] to use the hierarchical geometry tree (HGT) to manage the mesh structure, and
to implement the mesh refinement and/or coarsening. Regarding the error indicator, a possible method is the a posteriori
error estimation. Although there are a lot of works [29,20,7] concerning the a posteriori error estimation methods on the
finite element methods, the frameworks in those papers cannot be trivially used for the finite volume methods. In [5,11],
the goal-oriented a posteriori error estimation methods are proposed. However, to make the error indicator a reliable one,
a dual problem needs to be solved with higher-order numerical methods, which may cause the problem on the computa-
tional cost. In this paper, an ad hoc indicator for Euler equations, which is from the entropy production, is presented and
detailedly discussed. The reliability of this indicator is checked by a variety of numerical tests.

In [14], a WENO reconstruction method, which is different from the traditional ones [12,22], is adopted for the solution
reconstruction. The difference is that a new reconstruction patch is proposed in [14]. In this paper, a detailed discussion on
the behaviors of these patches for the steady problem is presented, which shows that the patch in [14] is a better choice
when the mesh adaptive method is adopted. Besides the reconstruction patch, a parameter appeared in the smoothness
indicator of the polynomials is also tested carefully, and an appropriate range of this parameter for the steady problems
is given. From the comparison of the numerical results from different patches, the one proposed in [14] is relatively not
sensitive to the parameters in the WENO methods. The numerical results also show that with this patch, the convergence
of the steady state of the Euler equations can still be reached successfully by using the adaptive method, which is not the
case for other reconstruction patches.

The rest of the paper is organized as follows. In next section, the WENO reconstruction for the steady problems is
detailedly discussed. Then the h-adaptive methods we used in this paper is introduced in Section 3. In Section 4, the
reliability and the effectiveness of our adaptive method is checked by a variety of numerical experiments. Finally, the
concluding remarks of this paper is given in Section 5.

2. WENO reconstructions on unstructured grids

A quite standard way to implement the WENO reconstruction is as follows. First, one needs to choose a reconstruction
patch for an element, and determine a set of reconstruction stencils on this patch. The sizes of the patch and each stencil
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