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a b s t r a c t

In this paper, an efficient multi-scale method is presented. Discrete block domains with
high mesh resolution are used to resolve fine scale features and the number of the blocks
to be solved is kept as small as being sufficient for constructing a block–block spatial spec-
trum. A pointwise spectrum for the blockwise variation is generated for each mesh point
on the corresponding block boundaries. These block-to-block spectra provide the required
formation for all the block interfaces, and hence enable the fine scale solutions in these
solved blocks to be mapped to a large domain simultaneously. The structured blocking also
provides a convenient domain division for parallel processing. The method has been
implemented in a 3-D time-marching finite volume solver for the Reynolds-averaged
compressible Navier–Stokes equations. The double Fourier series is adopted to construct
the pointwise spatial spectrum, which is well suited for wall bounded problems where a
domain layer with fine scale resolution is required. Several test cases of mass and heat
transfer problems have been examined and the results show consistently that the accurate
solutions for fine scale domains can be obtained very efficiently with a reduction in degrees
of freedom by two orders of magnitude, illustrating the potential of solving complex prob-
lems which might currently be intractable.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

There is a wide range of problems of practical interest, where the length scales to be dealt with are hugely disparate. In
many cases, there are two distinctive and very different length scales. The fine scale features of a huge number of
geometrically largely similar regions collectively interact with globally large scale phenomena. Examples include flows
through porous medium, effusion film-cooling through many holes of a tiny size, acoustical liners for duct noise reduction,
and surface mini-scale treatment for flow control (e.g., dimples etc.). The traditional treatment of this kind of problems
would be to use empirically based models to count for the effects of the small scale features and to solve an up-scaled prob-
lem on a coarse mesh. The generality of the solutions following this kind of approaches are of course limited by the very
empirical nature of these fine-scale models. In particular, when the behavior of the problem of interest is dependent on
the detailed fine scale configurations, a detailed analysis for understanding of the causal link between the fine-scale struc-
ture and large scale behavior would be difficult to get. A further task of altering the fine-scale geometry configuration for
performance sensitivity analysis and optimization would be even more difficult.

In recent years, there have been active developments in multi-scale methods [1–7]. Hou and Wu [1] proposed the multi-
scale model based on a finite element formulation, in which a local fine mesh solution is used to generate the basis function
linking to the corresponding coarse mesh variables, which is then used to construct the whole domain multi-scale solution
based on the coarse mesh solution. The principal multi-scale approach has been shown to produce good results for problems
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with a huge scale disparity. Similar developments have also been made using the finite volume formulations by Jenny et al.
[4,6,7]. An important property of the finite volume discretization scheme is that the conservation is maintained in the for-
mulation. A further iterative process has been introduced to reduce the errors caused by the localization treatment of the fine
scale solution for highly anisotropic problems [6]. The further iterations come with extra costs, and in a more recent devel-
opment, the computational efficiency is increased by local solution-based adaptive iterations [7]. The previous developments
in various forms, though largely based in incompressible flow models, have clearly indicated the potential of the multi-scale
models in solving problems which would otherwise be intractable.

In the present work, a new multi-scale modeling technique has been developed in conjunction with a finite volume meth-
od. The main intended attribute of the model is that the same numerical discretization scheme and integration method are
used for both the coarse and fine scales, so that the numerical resolution is consistently and completely dictated by the mesh
scales. A blocking of the fine resolution domain is introduced to facilitate the two basic and somewhat competing
requirements:

(a) accurate fine resolution of capturing fine scale flow features;
(b) avoidance of having to have fine mesh resolution for a large domain.

The way to gain the computational efficiency as the primary objective of all multi-scale modeling methods is now trans-
formed to that to generate an efficient and accurate block-to-block spectrum to enable a mapping of the fine block solution
to a large domain. The introduction of the fine mesh blocking structure gives an advantage that the model will fit in well with
most existing multi-block flow solvers, only needing small modifications in updating the block boundary interfaces and
some straightforward summations for generating the block-to-block spectrum. In a recent development, a block spectral
model has been developed to address a more specific film-cooling problem, as implemented in a finite volume compressible
flow solver in conjunction with a single-variable Fourier spectrum [8]. The accuracy and effectiveness of the technique dem-
onstrated in this previous work indicates its potential for other multi-scale problems. In the present work, the method is
extended to more general situations with a 2D (double) Fourier spatial spectrum and is examined and demonstrated for
some mass and heat transfer test cases of general interest.

In the following sections, the modeling consideration for the block spectral approach is introduced first, followed by
descriptions of the formulation, implementation and example results.

2. Modelling methodology

2.1. Two-scale problem

We consider the problems with a distinctive disparity in length scales and a similarity in geometrical and flow patterns
for the small scale regime. For a non-uniform flow through a layer of porous medium the length scale of pores is much

Nomenclature

Amn, Bmn, Cmn, Dmn coefficients of harmonics in the double Fourier series
AT amplitude of inlet stagnation temperature temporal variation
MB total number of fine scale blocks in the first index
Mb number of solved fine scale blocks in the first index
Mh number of Fourier harmonics in the first index.
NB total number of fine scale blocks in the second index.
Nb number of solved fine scale blocks in the second index.
Nh number of Fourier harmonics in the second index.
P01 inlet stagnation pressure
T01 inlet stagnation temperature
t physical time
U conservative flow variables
s pseudo time
x angular frequency

Subscripts
0 stagnation parameters; time or space averaged
I, J block indices
i, j block surface mesh point indices
m, n Harmonics indices for the double Fourier series
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