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a b s t r a c t

The Boltzmann equation describes the dynamics of rarefied gas flows, but the multidimen-
sional nature of its collision operator poses a real challenge for its numerical solution. In this
paper, the fast spectral method [36], originally developed by Mouhot and Pareschi for the
numerical approximation of the collision operator, is extended to deal with other collision
kernels, such as those corresponding to the soft, Lennard–Jones, and rigid attracting
potentials. The accuracy of the fast spectral method is checked by comparing our numerical
solutions of the space-homogeneous Boltzmann equation with the exact Bobylev–
Krook–Wu solutions for a gas of Maxwell molecules. It is found that the accuracy is
improved by replacing the trapezoidal rule with Gauss–Legendre quadrature in the calcula-
tion of the kernel mode, and the conservation of momentum and energy are ensured by the
Lagrangian multiplier method without loss of spectral accuracy. The relax-to-equilibrium
processes of different collision kernels with the same value of shear viscosity are then com-
pared; the numerical results indicate that different forms of the collision kernels can be
used as long as the shear viscosity (not only the value, but also its temperature dependence)
is recovered. An iteration scheme is employed to obtain stationary solutions of the space-
inhomogeneous Boltzmann equation, where the numerical errors decay exponentially. Four
classical benchmarking problems are investigated: the normal shock wave, and the planar
Fourier/Couette/force-driven Poiseuille flows. For normal shock waves, our numerical
results are compared with a finite difference solution of the Boltzmann equation for hard
sphere molecules, experimental data, and molecular dynamics simulation of argon using
the realistic Lennard–Jones potential. For planar Fourier/Couette/force-driven Poiseuille
flows, our results are compared with the direct simulation Monte Carlo method. Excellent
agreements are observed in all test cases, demonstrating the merit of the fast spectral
method as a computationally efficient method for rarefied gas dynamics.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

The fundamental task in the study of gas dynamics is to obtain the evolution of macroscopic quantities such as density,
bulk velocity, temperature, pressure tensor, and heat flux. Only when the Knudsen number (the ratio of the molecular mean
free path to a characteristic flow length, or characteristic flow frequency to mean collision frequency) is small, can the
evolution of macroscopic quantities be governed by partial differential equations such as the Navier–Stokes–Fourier
equations, Burnett equations, or the Grad-13 moment equations [1]. As the Knudsen number becomes appreciable, it is
necessary to adopt microscopic descriptions. Since the gas consists of a large number of molecules, the Newtonian
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description is computationally unrealistic. So we turn to the Boltzmann equation under the assumptions of molecular chaos
and binary collisions. This uses the one-particle distribution function to describe the system state, and macroscopic quan-
tities are derived from the velocity moments of the distribution function. In Boltzmann’s description, all molecules move
in straight lines with fixed velocities until they encounter elastic collisions with other molecules. The collision is modelled
by a nonlinear collision operator, where the intermolecular potential is incorporated into the collision kernel. The structure
of the collision operator is rather complicated: it is a fivefold integral with three dimensions in velocity space and two
dimensions in a unit sphere.

The multidimensional structure of the collision operator poses a real challenge to the numerical solution of the Boltz-
mann equation. From a historical point of view, realistic numerical computations of the Boltzmann equation are based on
probabilistic methods. Well-known examples are the direct simulation Monte Carlo (DSMC) methods developed by Bird
and Nanbu [2,3]. Despite their stochastic nature, DSMC solutions converge to those of the Boltzmann equation for a mon-
atomic gas in the limit of vanishing discretization and stochastic errors [4]. The main advantages of the DSMC method
are: (i) the simulated particles in DSMC represent a large number of real molecules so that the number of operations is
greatly reduced; (ii) it does not need artificial boundaries in velocity space; (iii) particles concentrate in regions where
the distribution function is not small so that computer memory is not wasted; (iv) it is very efficient for high-speed rarefied
gas flows. However, DSMC becomes time-consuming if the flow is in the continuum-fluid regime, especially when the Mach
number is small. Note that recently developed information preserving DSMC method [5,6], hybrid continuum/particle ap-
proaches [7–10], and the variance reduced DSMC method [11,12] have partly eased these difficulties.

Contrasting with the particle methods, there are numerical methods that solve the Boltzmann equation deterministically,
including the discrete velocity model (DVM), the finite-difference method, and the Fourier spectral method. A brief introduc-
tion to these methods is given below.

In 1989, Goldstein, Sturtevant, and Broadwell developed the first version of DVM [13]. They used a fixed set of discrete
velocities to approximate the continuous velocity space, and constructed a discrete collision mechanics on the velocity nodes
in order to preserve the main physical properties of the collision operator. However, a large amount of computational re-
sources are wasted since the post-collision velocities must lie on the velocity nodes. Bobylev, Palczewski, and Schneider con-
sidered the direct approximation of the collision operator and demonstrated that the computational cost is of the order
OðN7Þ, while the formal accuracy is less than first order in velocity, where N is the number of grid points in each velocity
direction [14]. The high computational cost drove researchers to consider mixed deterministic and stochastic methods
[15–18]. Recently, Morris, Varghese, and Goldstein used an interpolation scheme to map the post-collision velocities back
onto the velocity nodes and found that the performance of DVM is comparable to (or even faster than) DSMC in normal shock
wave simulations [19,20]. Also note that Mouhot, Pareschi, and Rey constructed a DVM for hard sphere molecules with com-
putational cost OðN3N3 log NÞ;N � N [21].

The kinetic theory group in Kyoto has developed a family of finite difference methods for the Boltzmann equation. In
1989, Sone, Ohwada, and Aoki proposed an accurate numerical kernel method for computing the linearized collision oper-
ator for hard sphere molecules [22]. Four years later, Ohwada extended the finite-difference method to calculate the full non-
linear collision operator for hard sphere molecules [23,24]. This method seems to be restricted to one-dimensional problems
such as normal shock flow and Fourier heat flow between two parallel plates where the velocity distribution function has a
cylindrical symmetry, i.e., it is a function of the longitudinal and transversal velocities. In this way, the number of velocity
nodes and the computational cost are dramatically reduced. In 2001, the finite difference method was applied by Kosuge,
Aoki, and Takata to the Boltzmann equation for a binary gas mixture of hard sphere molecules [25].

In 1996, inspired by the pioneering work of Bobylev using Fourier transform techniques in the analysis of the Boltzmann
equation for Maxwell molecules [26], Pareschi and Perthame proposed a spectral method to approximate the collision oper-
ator for a class of collision kernels, where the computational cost is of the order OðN6Þ [27]. One year later, Bobylev and Rjasa-
now developed a numerical method to solve the collision operator for Maxwell molecules with computational cost of the
order OðN4Þ [28]. This is in general the fastest algorithm to date. However, its formal accuracy is only of the order
OðN�1=2Þ. For one-dimensional problems such as Fourier heat flow and normal shock flow, Watchararuangwita, Grigoriev,
and Meleshko observed that cylindrical symmetry allows a reduction of the computational cost to the order OðN2 log NÞ
by employing the fast Fourier transform (FFT) in the longitudinal velocity direction and Hankel transform in the transverse
direction [29]. In 1999, based on the Carleman representation, Bobylev and Rjasanow were able to solve the collision oper-
ator for hard sphere molecules with a computational cost OðN6 log NÞ and formal accuracy OðN�2Þ, using generalized Radon
and X-ray transforms [30]. A faster numerical method with a computational cost OðN6Þ and formal accuracy OðN�2Þ has also
been proposed for the variable hard sphere (VHS) model by Ibragimov and Rjasanow [31]. Based on these Fourier spectral
methods, Gamba and Tharkabhushanam developed a spectral-Lagrangian method both for elastic and inelastic collision
operators and investigated space-inhomogeneous problems, i.e., one-dimensional Fourier heat flow and shock flow [32,33].

In 2000, Pareschi and Russo developed an algorithm to solve the collision operator for the VHS model with a computa-
tional cost of OðN6Þ [34]. The approximation of the collision operator is spectrally accurate for smooth velocity distribution
functions, where the decay rate of the error is faster than any polynomial, i.e., faster than O (N�r) for any r > 0. The method
has been successfully applied to space-inhomogeneous problems in two-dimensional velocity space [35]. Six years later, by
means of the Carleman-like representation, Mouhot and Pareschi developed a faster spectral algorithm with a computational
cost OðM2N3 log NÞ and spectral accuracy, where M is the number of grid points in the discretizations of polar and azimuthal
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