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a b s t r a c t

In this article, an accurate numerical approach is introduced. In this approach we mixed
between the fractional finite difference method and the restrictive Taylor approximation
(RTA). The proposed method is implemented to solve numerically the perturbed fractional
partial differential equations (FPDEs). Special attention is given to study the stability and
consistency of the method by means of Gerschgorin theorem and using the stability matrix
analysis. Two numerical examples are given and compared with the exact solution.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

FPDEs have been the focus of many studies due to their frequent appearance in various applications in fluid mechanics,
visco-elasticity, biology, physics and engineering [1]. Consequently, considerable attention has been given to the solutions of
FPDEs of physical interest. And is known that it is difficult to obtain the exact solution of FPDEs, so approximate and numer-
ical techniques [2–6,8–18] must be used. There are several methods for obtaining the analytical and numerical solutions of
PDEs, such as, spectral collocation methods [22,24], finite difference method [21,23,25] and others.

In this section, some basic definitions for fractional derivatives and Gerschgorin theorem which are used in the other sec-
tions are given.

Definition 1. The Riemann–Liouville fractional derivative operator Da of order a is defined in the following form

Daf ðxÞ :¼ 1
Cðm� aÞ

dm

dxm

Z x

0

f ðtÞ
ðx� tÞa�mþ1 dt; a > 0; x > 0;

where m� 1 < a 6 m, m 2 N, and C is Gamma function. For the Riemann–Liouville’s derivative we have [19]

Daxn ¼
0; for n 2 N0 and n < dae;
Cðnþ1Þ

Cðnþ1�aÞ x
n�a; for n 2 N0 and n P dae:

(
ð1Þ

We use the ceiling function dae to denote the smallest integer greater than or equal to a and N0 ¼ f0;1;2; . . .g. Recall that for
a 2 N, the Riemann–Liouville differential operator coincides with the usual differential operator of integer order.
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Similar to integer-order differentiation, Riemann–Liouville fractional derivative operator is a linear operation

Daðkf ðxÞ þ lgðxÞÞ ¼ kDaf ðxÞ þ lDagðxÞ;

where k and l are constants.
For more details on fractional derivatives definitions and its properties see [19,20].

Theorem 1 (Gerschgorin theorem). Let the matrix A � ðaijÞ has eigenvalues k and define the absolute row and column sums by

ri �
Xn

j¼1; j–i

jaijj; ci �
Xn

i¼1; i–j

jaijj;

then

(a) Each eigenvalues lies in the union of the row circles Ri, i ¼ 1;2; . . . ;n where

Ri � fz : jz� aiij 6 rig;

(b) Each eigenvalues lies in the union of the column circles Cj, j ¼ 1;2; . . . ;n where

Cj � fz : jz� ajjj 6 cjg:

Proof. See [7]. h

In this paper, we will introduce the numerical solution of the following perturbed fractional partial differential equation
of the form

d
@u
@t
� kDau ¼ sðxÞ; a < x < b; t > 0; 1 < a 6 2; ð2Þ

where u ¼ uðx; tÞ, d� 1 (very small) and k are given positive constants and the parameter a refers to the order of Riemann–
Liouville derivative of spatial. The function sðxÞ is a given heat source. We assume an initial condition

uðx;0Þ ¼ u0ðxÞ; for a 6 x 6 b;

and zero Dirichlet boundary conditions.
Note that, at a ¼ 2, Eq. (2) is the classical perturbed parabolic PDE

d
@u
@t
� k

@2u
@x2 ¼ sðxÞ:

2. Preliminaries and basic definitions

2.1. Restrictive Taylor approximation

In this section, we will use the restrictive Taylor’s expansion [4,5] of the function f ðxÞ at the point x0, with parameter h to
be determined such that the error equal to zero at certain point a. If the parameter h reduces to one we get the classical Tay-
lor’s expansion at the point x0. The advantage is that it has exact value at the points a and x0 and relatively small in between.

Consider the function f ðxÞ defined in a neighborhood of x0, and has derivative up to order nþ 1, we define the restrictive
Taylor’s approximation RTn;f ðxÞðxÞ of degree n for the function f ðxÞ at the point x0 as follows [5]

RTn;f ðxÞðxÞ ¼ f ðx0Þ þ
ðx� x0Þ

1!
f 0ðx0Þ þ

ðx� x0Þ2

2!
f 00ðx0Þ þ � � � þ

ðx� x0Þn�1

ðn� 1Þ! f ðn�1Þðx0Þ þ
hðx� x0Þn

n!
f ðnÞðx0Þ: ð3Þ

The restrictive parameter h is to be determined, such that

RTn;f ðxÞðaÞ ¼ f ðaÞ: ð4Þ

It means that the considered approximation is exact at two points x0 and a. Let us suppose

f ðxÞ ¼ RTn;f ðxÞðxÞ þ Rnþ1ðx; hðxÞÞ; ð5Þ

where Rnþ1ðx; hðxÞÞ is the remainder term of the restrictive Taylor’s series.
In the next theorem, the remainder term Rnþ1ðx; hðxÞÞ can be expressed in terms of h, nth and ðnþ 1Þth derivatives of the

function f ðxÞ at a point n lies between x0 and x.

Theorem 2 [5]. Assume that f ðxÞ and its derivatives up to order nþ 1 are continuous in a certain neighborhood of a point x0.
Suppose, furthermore, that x is any value of the argument value from the indicated neighborhood and h is a restrictive Taylor’s
parameter. Then there is a point n 2 ½x0; x� such that the error of the approximation estimated by Rnþ1ðx; hðxÞÞ is given in the
formula (5), for which
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