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a b s t r a c t

A probabilistic graphical model approach to uncertainty quantification for flows in random
porous media is introduced. Model reduction techniques are used locally in the graph to
represent the random permeability. Then the conditional distribution of the multi-output
responses on the low dimensional representation of the permeability field is factorized into
a product of local potential functions. An expectation–maximization algorithm is used to
learn the nonparametric representation of these potentials using the given input/output
data. We develop a nonparametric belief propagation method for uncertainty quantifica-
tion by employing the loopy belief propagation algorithm. The nonparametric nature of
our model is able to capture non-Gaussian features of the response. The proposed frame-
work can be used as a surrogate model to predict the responses for new input realizations
as well as our confidence on these predictions. Numerical examples are presented to dem-
onstrate the accuracy and efficiency of the proposed framework for solving uncertainty
quantification problems in flows through porous media using stationary and non-station-
ary permeability fields.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Uncertainty Quantification (UQ) of multi-scale and multi-physics systems is a field of great interest and has attracted the
attention of many researchers and communities in recent years. However, it is difficult to construct a complete probabilistic
model of such problems mainly because they often involve high-dimensional and continuous random variables, which have
complex, multi-modal distributions.

Over the past few decades, many methods and algorithms have been developed to address UQ problems. The most widely
used approach is the Monte Carlo (MC) method. The wide acceptance of the MC method is due to the fact that it can uncover
the complete statistics of the solution, while having a convergence rate that is (remarkably) independent of the input dimen-
sion. Nevertheless, it quickly becomes inefficient in high dimensional and computationally intensive problems, where only a
few samples can be observed. Other methods are attempting to construct a surrogate model for the complex physical system.
The idea is to run the deterministic physical solver on a small, well-selected set of inputs and then use these data to learn the
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response surface, so that the UQ problem can be studied based on the surrogate instead of the computationally expensive
simulator. Such methods include, adaptive sparse grid collocation method (AGSC) [1], multi-response Gaussian process
method (MGP) [2], adaptive locally weighted projection regression methods (ALWPR) [3], and so on. However, all these
methods face the ‘‘curse of dimensionality’’, when the inputs are high-dimensional.

Probabilistic graphical models [4] provide a powerful framework that effectively interprets complex probabilistic rela-
tions between many inter-correlated variables. The two basic elements of a graphical model are its nodes and edges. The
nodes represent the random variables and edges linking nodes represent correlations between them. The joint probability
distribution can be accessed by decomposing the complex network into local clusters (e.g., maximal cliques) defined by con-
nected subsets of nodes. Then, by applying appropriate inference algorithms, the marginal and conditional probabilities of
interest can be effectively calculated.

Probabilistic graphical model has been used in a range of application domains, which include web search [5], medical and
fault diagnosis [6], speech recognition [7], robot navigation [8], bioinformatics [9], communications [10], natural language
processing [11], computer vision [12], and many more. Most of these applications involve discrete random variables or
low-dimensional continuous random variables. However, for problems involving high-dimensional continuous variables,
the number of efficient and accurate algorithms is limited.

The general procedure of studying a graphical model problem can be summarized as follows: (1) Design the structure of
the graphical model; (2) Select suitable model reduction techniques to reduce the dimensionality of the random input; (3)
Prepare the training data; (4) Learn the parameters of the graphical model using the training data; (5) Solve an inference
problem, that is, find the conditional or marginal probabilities of interest. In this work, the problem under consideration
is flow through porous (heterogeneous) media. We are interested in constructing a graphical model that captures the prob-
abilistic relationship between the input permeability field and the response properties field, such as velocity and pressure.
All the unknown parameters of the graphical model can be learned locally via techniques such as maximum likelihood
(MLE), or maximum a posterior probability (MAP). To address the inference problem, several sampling and variational algo-
rithms can be applied. Since the designed graphical model in this work is nonparametric, a sampling-based nonparametric
belief propagation [13,14] algorithm is employed to carry out the inference task. The proposed framework allows us to inves-
tigate the uncertainty propagation problem. In addition, it can also act as a surrogate model to the deterministic solver, that
is, for any realization of the input permeability, it can give us the predictions of physical responses as well as the confidence
on these predictions (induced by the limited data used to train the graphical model).

In [15], the authors proposed a probabilistic graphical model for multiscale stochastic partial differential equations
(SPDEs) that focuses on the correlation between physical responses. The distribution of physical responses conditioned on
stochastic input was approximated using conditional random field theories. Different physical responses (such as flux and
pressure in flows in heterogeneous media) are correlated in such a way that their interactions are assumed to be conditioned
on fine-scale local properties. No model reduction of fine-scale properties was involved in this process. The influence of fine-
scale properties on coarse-scale responses was modeled through a set of hidden variables. The approach in this paper is sig-
nificantly different in multiple fronts: (1) the graphical model considers output responses that are independent of each
other; (2) an explicit model reduction scheme is considered to reduce the dimensionality of the random permeability field
without the need for introducing hidden variables; and (3) the graph structure and graph learning scheme are implemented
based on the Expectation/Maximization (EM) algorithm and a sampling based approach to nonparametric belief propagation,
respectively.

This paper is organized as follows. First, the problem definition is given in Section 2. Then the basic procedure of how to
construct an appropriate graphical model and all the associated algorithms are discussed in Sections 3–5. In Section 6, we
introduce the porous media flow problem and provide various examples demonstrating the efficiency and accuracy of the
graphical model approach. Brief discussion and conclusions are finally provided in Section 7.

(a) (b)
Fig. 1. Schematic of the domain partition: (a) fine- and coarse-scale grids and (b) fine-scale local region in one coarse-element.
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