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a b s t r a c t

In this work, we will propose an adaptive time step method for simulating the dynamics of
the phase field crystal (PFC) model. The numerical simulation of the PFC model needs long
time to reach steady state, and then large time-stepping method is necessary. Uncondition-
ally energy stable schemes are used to solve the PFC model. The time steps are adaptively
determined based on the time derivative of the corresponding energy. It is found that the
use of the proposed time step adaptivity cannot only resolve the steady state solution, but
also the dynamical development of the solution efficiently and accurately. The numerical
experiments demonstrate that the CPU time is significantly saved for long time
simulations.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

The phase field crystal (PFC) model was recently proposed in [4,5] to study the nonequilibrium microstructure formation
by introducing a free energy functional of the local-time-averaged density field. It is a conservative form of the familiar, non-
conserved, Swift–Hohenberg (SH) equation [17]. This model addresses the crystal formation at the atomic scale in space but
on a coarse-grained diffusive time scale, which is a significant advantage over other atomistic methods where the time steps
are constrained by atomic-vibration time scales. The model can account for elastic and plastic deformations, multiple crystal
orientations, and many other observable phenomena, see, e.g., [12], for a recent review.

Consider a dimensionless energy of the form [4,17]
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where the domain X � RD, / : X! R is the density field, � is a constant assumed to be less than 1, and r and D are the gra-
dient and Laplacian operators, respectively. Suppose that X ¼ ð0; LxÞ � ð0; LyÞ and that / and D/ are periodic on X.

We consider two types of gradient dynamics on X:

(i) Nonconserved dynamics (SH)

@t/ ¼ �Mð/Þl ð1:2Þ
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where Mð/Þ > 0 is a mobility, l is the chemical potential defined as

l :¼ d/E ¼ /3 þ ð1� �Þ/þ 2D/þ D2/; ð1:3Þ

and d/E denotes the variational derivative with respect to /, and
(ii) Conserved dynamics (PFC)

@t/ ¼ r � Mð/Þrlð Þ: ð1:4Þ

Because the dynamical equations are of gradient type, it is easy to see that the energy (1.1) is nonincreasing in time along the
solution trajectories of either (1.2) or (1.4). Eq. (1.2) is referred to as the Swift–Hohenberg (SH) equation and is fourth-order
in space. Eq. (1.4) is the phase field crystal (PFC) equation and is sixth-order in space.

The SH equation and the PFC equation are high order nonlinear partial differential equations. They cannot generally be
solved analytically. Therefore, efficient numerical algorithms are essential in the computer simulations. The standard explicit
Euler scheme is known to be unstable for the time step Dt above the threshold fixed by the lattice spacing Dx; more precisely,
Dt should be proportional to ðDtÞ4 for the SH equation and ðDtÞ6 for the PFC equation. It is very time-consuming for long time
simulations. In [1], a backward Euler scheme was presented with the linearized discretization 3ð/kÞ2/kþ1 � 2ð/kÞ3 for the
nonlinear term /3. Although the stability analysis was not given, it was claimed that relatively large time steps can be
achieved. A linear splitting scheme was proposed in [2] for the PFC equation. Three parameters are involved to control
the degree of the splitting. By applying the standard Fourier stability analysis, the constraints on these parameters are ob-
tained which help to yield an unconditionally stable difference scheme. Similar schemes have been used for the numerical
simulations of a nonlinear epitaxial growth model [13], and the Cahn–Hilliard (CH) and Allan–Cahn (AC) equations [19]. All
these schemes are linearized difference schemes. The unique solvability and convergence of the numerical solution can be
achieved. However, the energy stability has not been considered, which attracts more attentions from the application point
of view for the SH and PFC equations.

Eyre [7] exploited a convex splitting of the energy functional method to study the unconditionally energy stable time dis-
cretization of the Cahn–Hilliard equation. This method has been extensively used for a variety of gradient flow problems, see
e.g., [15,20–22] and their reference therein. Recently, a one-step first order nonlinear difference scheme has been presented
in [23] for the PFC equation. The unconditionally energy stability Eð/kþ1Þ 6 Eð/kÞ was proved by the convex splitting of the
energy functional. Under the same theoretical framework, a second order nonlinear scheme was proposed in [9]. In stead of
the unconditionally energy stability, an unconditionally weak energy stability Eð/kþ1Þ 6 Eð/0Þ was proved. The uncondition-
ally unique solvability and discrete mass conservation were also given in [9,23]. An alternate approach to these energy stable
nonlinear convex splitting schemes for the SH and PFC equations is the conditionally energy stable linear splitting scheme as
was suggested in [24] for a molecular beam epitaxial (MBE) equation and in [8] for the CH equation. This would involve the
splitting parameters which should be chosen sufficiently large to ensure the energy stability. However, these parameters
depend on the unknown solutions as shown in [8,9,24].

In this paper, we will first present the energy identity results for the SH and PFC equations which reveal the energy
dissipation property. A first order and a second order nonlinear one-step difference schemes will be employed. The uncon-
ditionally energy stability can be derived by using the discrete Green’s formula and Cauchy–Schwartz inequality for the first
order scheme, which is a different approach of the analysis as that in [23]. For the proposed second order scheme, it uses a
special combination of the nonlinear term, which has been used to construct unconditionally energy stable schemes for the
CH equation in [3,6]. It will be shown that with this approach, not only the decay properties are preserved for the discrete
energy, the discrete energy identities can also hold for the SH and PFC equations. These energy stable schemes allow large
time steps, and therefore are very useful for long time simulations. To further improve the efficiency of our method, we are
going to propose an adaptive time-stepping strategy. Adaptive time stepping has been well studied for solving initial value
problems in ODEs. Söderlind [16] reviewed some time step control methods for local time adaptivity based on linear feed-
back theory. In [11], two adaptive time methods are compared with constant time steps for coupled flow and deformation
models. In their work, the pore pressure method is an inexpensive adaptive method whose behavior closely follows the
physics of the problem, while the local error method is more time-consuming at each time step because feedback steps
may be involved. In [18], a locally varying time step method was developed for solving hyperbolic conservative PDEs. At
the same time level, the large time step is adopted in the domain with smooth solutions, while the small time step is taken
in the region with nearly singular solutions. In this work, our adaptive time-stepping technique will be developed based on
the energy variation which is an important physical quantity in the SH and PFC model. This adaptive time-stepping strategy
was introduced in [14] and was also successfully applied in the simulations of the Cahn–Hilliard equation in [25]. The small
time steps will be adopted when the energy has a quick decay and large time steps will be used when the energy decays
slowly. It can be observed in the numerical simulations that this adaptive time-stepping strategy can greatly save the
CPU time without losing the accuracy.

This paper is organized as follows. In Section 2, we construct two unconditionally energy stable implicit finite difference
schemes for solving the SH and PFC equations. An adaptive time-stepping technique is proposed in Section 3, where the
adaptive time step is determined based on the variation of the energy. Numerical experiments are presented in Section 4,
and some concluding remarks are given in the final section.
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