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a b s t r a c t

We present an adaptive meshfree method to approximate phase-field models of biomem-
branes. In such models, the Helfrich curvature elastic energy, the surface area, and the
enclosed volume of a vesicle are written as functionals of a continuous phase-field, which
describes the interface in a smeared manner. Such functionals involve up to second-order
spatial derivatives of the phase-field, leading to fourth-order Euler–Lagrange partial differ-
ential equations (PDE). The solutions develop sharp internal layers in the vicinity of the
putative interface, and are nearly constant elsewhere. Thanks to the smoothness of the
local maximum-entropy (max-ent) meshfree basis functions, we approximate numerically
this high-order phase-field model with a direct Ritz–Galerkin method. The flexibility of the
meshfree method allows us to easily adapt the grid to resolve the sharp features of the
solutions. Thus, the proposed approach is more efficient than common tensor product
methods (e.g. finite differences or spectral methods), and simpler than unstructured C0

finite element methods, applicable by reformulating the model as a system of second-order
PDE. The proposed method, implemented here under the assumption of axisymmetry,
allows us to show numerical evidence of convergence of the phase-field solutions to the
sharp interface limit as the regularization parameter approaches zero. In a companion
paper, we present a Lagrangian method based on the approximants analyzed here to study
the dynamics of vesicles embedded in a viscous fluid.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Biomembranes are the fundamental separation structure in animal cells, and are responsible for the compartmentaliza-
tion of the cell or for the transport of substances through cargo vesicles or tubes. They also play a key role in bio-mimetic
engineered systems [1]. Their complex behaviour, rich physical properties, formation and dynamics have been objects of
experimental and theoretical investigation for biologists, chemists and physicists during many years [2,3]. Biomembranes
are composed by several kinds of lipids self-assembled in a fluid bilayer, which presents a liquid behaviour in-plane and solid
out-of-plane [4]. Vesicles are closed biomembranes, which play an important role in biophysical processes such as in the
delivery of proteins, antibodies or drugs into cells, and separation of different types of biological macromolecules within
cells. Vesicles serve as simplified models of more complex biological systems, and can be used to study the interaction be-
tween lipid bilayers and the surrounding medium, e.g. under osmotic stress [5], shear flow [6], or electrical fields [7].
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Depending on the lipid composition, lipid bilayers can phase-separate forming multicomponent vesicles [8], which have also
been the object of numerous studies as model systems for rafts.

Lipid bilayers can be modeled by very different techniques, depending on the focus. Atomistic [9] and coarse-grained [10]
molecular dynamics (MD) can access molecular processes and the self-assembly. However, due to the slow relaxation of the
bending modes, the computational cost of molecular simulations scales as L6, where L is the lateral dimension of the system
[11]. Even if coarse-grained MD simulations have been able to describe the collective dynamics of membrane patches of tens
of nanometers, this sets a very stringent limit on the system sizes accessible with these methods. Other mesoscopic methods
such as dynamically triangulated surfaces have been proposed to deal with intermediate scales [12]. On the other end of the
spectrum, continuum mechanics has shown great success over the last decades in describing the equilibrium shapes of ves-
icles [4,13,14]. Continuum models have also helped understand the dynamics of fluctuations of bilayers [15], or the shape
dynamics of membranes [16,17]. Continuum mechanics models of biomembranes disregard atomic details, but still can
incorporate many important effects such as the bilayer asymmetry, the spontaneous curvature, the diffusion of chemical
species on the bilayer, or the dissipative mechanisms arising from the friction between the lipids [18]. Furthermore, these
methods can easily access wide spans of time and length scales. The main drawback of these models is that they are usually
formulated as complex nonlinear high-order partial differential equations (PDE). Here, we focus on the numerical approxi-
mation of a simple curvature model for biomembranes.

The Canham–Helfrich functional [19,20] is a widely accepted continuum model for the curvature elasticity of fluid mem-
branes, which explains to a large extent the observed morphologies of vesicles. This sharp interface model has been the basis
of a number of numerical parametric approaches for the equilibrium analysis of axisymmetric and three-dimensional ves-
icles. The resulting equations for the parameterization are fourth-order nonlinear PDE. This functional is reparameterization
invariant, which reflects mathematically the in-plane fluidity of lipid bilayers above the transition temperature. This feature
poses numerical difficulties to parametric methods, since this invariance needs to be controlled to avoid serious mesh dis-
tortions [21,22].

Phase-field counterparts of this model have been proposed and exercised numerically [23–25]. Although these methods
increase the dimension of the problem, they naturally overcome the limitations of parametric methods when extreme shape,
or even topology changes are present, and produce more robust simulations. Furthermore, these methods are more amena-
ble to scalable parallel computations for complex systems, particularly when coupling them to the fluid mechanics of the
ambient medium. Yet, the numerical solution of these models, again expressed mathematically as a nonlinear fourth-order
PDE, is challenging. Here, we propose to address the high-order character of the equations and the sharp fronts they develop
with an adaptive meshfree method. We also establish the ability of the local maximum-entropy approximants [26] to accu-
rately and efficiently approximate equilibrium solutions of the phase-field model with a straight Ritz–Galerkin approach. In
a companion paper [27], we propose a Lagrangian method to deal with the dynamics of vesicles embedded in a viscous fluid
in the low Reynolds number limit, representative of most biological situations of interest.

The outline of the paper is as follows. Section 2 introduces the sharp interface and the phase-field models for the curva-
ture elasticity of biomembranes, as well as a brief account of the numerical strategies to address these models. Section 3
describes the discretization of the phase-field functionals with the local maximum-entropy approximations schemes, the
algorithm to find equilibrium solutions, and the method used to distribute the nodes. Numerical experiments to evaluate
the performance of the approximants and the adaptive strategy are presented in Section 4. The final conclusions are collected
in Section 5.

2. Sharp interface model, phase-field model, and its numerical treatment

2.1. Sharp interface model

In the sharp interface (S-I) approach, the membrane is a mathematical surface without thickness. The equilibrium shapes
of vesicles minimize the Canham–Helfrich energy under area and enclosed volume constraints follow from

ðS-I modelÞ Minimize EðCÞ ¼ k
2

Z
C

H � C0ð Þ2dSþ kG

Z
C

KdS

subject to VðCÞ ¼ 1
3

Z
C

x � ndS ¼ V0

AðCÞ ¼
Z

C
dS ¼ A0;

where C is the surface, k the bending rigidity, kG the Gaussian bending rigidity, H the mean curvature, K the Gaussian cur-
vature, n the normal to the surface, V0 and A0 are the prescribed volume and surface area, and C0 is the spontaneous curva-
ture. For surfaces of constant topology, the second integral in the curvature energy is a constant, and for this reason it is often
ignored. We do not consider this term in the remainder of the paper, although is can be easily incorporated.

The area constraint comes from the near inextensibility of lipid bilayers under the usual applied forces. The volume can be
regulated by osmotic effects, since biomembranes are semi-permeable. If the volume V0 is smaller than the volume enclosed
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