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a b s t r a c t

This paper describes a forward algorithm and an adjoint algorithm for computing sensitiv-
ity derivatives in chaotic dynamical systems, such as the Lorenz attractor. The algorithms
compute the derivative of long time averaged ‘‘statistical’’ quantities to infinitesimal per-
turbations of the system parameters. The algorithms are demonstrated on the Lorenz
attractor. We show that sensitivity derivatives of statistical quantities can be accurately
estimated using a single, short trajectory (over a time interval of 20) on the Lorenz
attractor.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

Computational methods for sensitivity analysis is a powerful tool in modern computational science and engineering.
These methods calculate the derivatives of output quantities with respect to input parameters in computational simulations.
There are two types of algorithms for computing sensitivity derivatives: the forward algorithms and the adjoint algorithms.
The forward algorithms are more efficient for computing sensitivity derivatives of many output quantities to a few input
parameters; the adjoint algorithms are more efficient for computing sensitivity derivatives of a few output quantities to
many input parameters. Key application of computational methods for sensitivity analysis include aerodynamic shape opti-
mization [3], adaptive grid refinement [9], and data assimilation for weather forecasting [8].

In simulations of chaotic dynamical systems, such as turbulent flows and the climate system, many output quantities of
interest are ‘‘statistical averages’’. Denote the state of the dynamical system as xðtÞ; for a function of the state JðxÞ, the cor-
responding statistical quantity hJi is defined as an average of JðxðtÞÞ over an infinitely long time interval:

hJi ¼ lim
T!1

1
T

Z T

0
JðxðtÞÞdt: ð1Þ

For ergodic dynamical systems, a statistical average only depends on the governing dynamical system, and does not depend
on the particular choice of trajectory xðtÞ.

Many statistical averages, such as the mean aerodynamic forces in turbulent flow simulations, and the mean global tem-
perature in climate simulations, are of great scientific and engineering interest. Computing sensitivities of these statistical
quantities to input parameters can be useful in many applications.
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The differentiability of these statistical averages to parameters of interest as been established through the recent
developments in the Linear Response Theory for dissipative chaos [6,7]. A class of chaotic dynamical systems, known as
‘‘quasi-hyperbolic’’ systems, has been proven to have statistical quantities that are differentiable with respect to small
perturbations. These systems include the Lorenz attractor, and possibly many systems of engineering interest, such as tur-
bulent flows.

Despite recent advances both in Linear Response Theory [7] and in numerical methods for sensitivity computation of un-
steady systems [10,4], sensitivity computation of statistical quantities in chaotic dynamical systems remains difficult. A ma-
jor challenge in computing sensitivities in chaotic dynamical systems is their sensitivity to the initial condition, commonly
known as the ‘‘butterfly effect’’. The linearized equations, used both in forward and adjoint sensitivity computations, give
rise to solutions that blow up exponentially. When a statistical quantity is approximated by a finite time average, the com-
puted sensitivity derivative of the finite time average diverges to infinity, instead of converging to the sensitivity derivative
of the statistical quantity [5]. Existing methods for computing correct sensitivity derivatives of statistical quantities usually
involve averaging over a large number of ensemble calculations [5,1]. The resulting high computation cost makes these
methods not attractive in many applications.

This paper outlines a computational method for efficiently estimating the sensitivity derivative of time averaged statis-
tical quantities, relying on a single trajectory over a small time interval. The key idea of our method, inversion of the ‘‘sha-
dow’’ operator, is already used as a tool for proving structural stability of strange attractors [6]. The key strategy of our
method, divide and conquer of the shadow operator, is inspired by recent advances in numerical computation of the Lyapu-
nov covariant vectors [2,11].

In the rest of this paper, Section 2 describes the ‘‘shadow’’ operator, on which our method is based. Section 3 derives the
sensitivity analysis algorithm by inverting the shadow operator. Section 4 introduces a fix to the singularity of the shadow
operator. Section 5 summarizes the forward sensitivity analysis algorithm. Section 6 derives the corresponding adjoint ver-
sion of the sensitivity analysis algorithm. Section 7 demonstrates both the forward and adjoint algorithms on the Lorenz
attractor. Section 8 concludes this paper.

The paper uses the following mathematical notation: Vector fields in the state space (e.g. f ðxÞ;/iðxÞ) are column vectors;
gradient of scalar fields (e.g.

@ax
i

@x ) are row vectors; gradient of vector fields (e.g. @f
@x) are matrices with each row being a dimen-

sion of f, and each column being a dimension of x. The (�) sign is used to identify matrix–vector products or vector-vector
inner products. For a trajectory xðtÞ satisfying dx

dt ¼ f ðxÞ and a scalar or vector field aðxÞ in the state space, we often use da
dt

to denote daðxðtÞÞ
dt . The chain rule da

dt ¼ da
dx � dx

dt ¼ da
dx � f is often used without explanation.

2. The ‘‘shadow operator’’

For a smooth, uniformly bounded n dimensional vector field dxðxÞ, defined on the n dimensional state space of x. The fol-
lowing transform defines a slightly ‘‘distorted’’ coordinates of the state space:

x0ðxÞ ¼ xþ �dxðxÞ; ð2Þ

where � is a small real number. Note that for an infinitesimal �, the following relation holds:

x0ðxÞ � x ¼ �dxðxÞ ¼ �dxðx0Þ þ Oð�2Þ: ð3Þ

We call the transform from x to x0 as a ‘‘shadow coordinate transform’’. In particular, consider a trajectory xðtÞ and the cor-
responding transformed trajectory x0ðtÞ ¼ x0ðxðtÞÞ. For a small �, the transformed trajectory x0ðtÞwould ‘‘shadow’’ the original
trajectory xðtÞ, i.e., it stays uniformly close to xðtÞ forever. Fig. 1 shows an example of a trajectory and its shadow.

Now consider a trajectory xðtÞ satisfying an ordinary differential equation

_x ¼ f ðxÞ ð4Þ

with a smooth vector field f ðxÞ as a function of x. The same trajectory in the transformed ‘‘shadow’’ coordinates x0ðtÞ do not
satisfy the same differential equation. Instead, from Eq. (3), we obtain

_x0 ¼ f ðxÞ þ � @dx
@x
� f ðxÞ ¼ f ðx0Þ � � @x

@x
� dxðx0Þ þ � @dx

@x
� f ðx0Þ þ Oð�2Þ ð5Þ

In other words, the shadow trajectory x0ðtÞ satisfies a slightly perturbed equation

_x0 ¼ f ðx0Þ þ �df ðx0Þ þ Oð�2Þ; ð6Þ

where the perturbation df is

df ðxÞ ¼ � @f
@x
� dxðxÞ þ @dx

@x
� f ðxÞ ¼ � @f

@x
� dxðxÞ þ ddx

dt
:¼ ðSf dxÞðxÞ: ð7Þ

For a given differential equation _x ¼ f ðxÞ, Eq. (7) defines a linear operator Sf : dx) df . We call Sf the ‘‘shadow operator’’ of f.
For any smooth vector field dxðxÞ that defines a slightly distorted ‘‘shadow’’ coordinate system in the state space, Sf deter-
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