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a b s t r a c t

Direct numerical simulations of turbulence are optimized for up to 192 graphics proces-
sors. The results from two large GPU clusters are compared to the performance of corre-
sponding CPU clusters. A number of important algorithm changes are necessary to
access the full computational power of graphics processors and these adaptations are dis-
cussed. It is shown that the handling of subdomain communication becomes even more
critical when using GPU based supercomputers. The potential for overlap of MPI commu-
nication with GPU computation is analyzed and then optimized. Detailed timings reveal
that the internal calculations are now so efficient that the operations related to MPI com-
munication are the primary scaling bottleneck at all but the very largest problem sizes that
can fit on the hardware. This work gives a glimpse of the CFD performance issues will dom-
inate many hardware platform in the near future.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

The direct numerical simulation (DNS) of turbulence is a computationally intensive scientific problem that can benefit
significantly from improvements in computational hardware performance. Graphics processors (GPUs) are special purpose
hardware that are designed for interactive gaming, not for large scientific computations. Nevertheless, GPUs are reasonably
well suited for many tasks that appear in scientific computing, and it is of some interest to examine their potential impact on
computationally intensive algorithms such as the simulation of turbulent flow.

The fundamental advantage of GPUs over classic CPUs comes from the entirely different design of the memory subsystem.
GPUs are designed to display millions of pixels at a rate of at least 60 times per second. The hardware is therefore directly
designed to stream large sets of data in, do a few calculations on the data, and then stream the data out (often to the screen).
To do this, GPUs use fast memory (DDR5) whereas most CPUs still use DDR3. They also use many duplicate channels to mem-
ory (16 at a time) rather than the typical two channels for a quad core CPU. And finally these processors do not use cache
approaches to try and hide the memory latency as CPUs do. Caches are designed to speed up email, operating system tasks,
and word processing. But caches are not typically useful for enhancing game performance or scientific computations. The
long memory streams encountered in graphics applications (or PDE solvers) defeat caches.

The memory streams in a direct numerical solution of turbulence, such as a pressure or velocity field, are on the order of 1
billion bytes each. We would like to efficiently stream this data in, do a few computations and return the same field but at
the next time level. Because processor speeds have been increasing over the last decade but memory speeds have not, all CFD
simulations (and in fact almost all PDE solution techniques) are memory bound. This means, that on modern computers the
computations are not important to the performance of the algorithm. The critical factor is the ability to read data in, and
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write results out. GPU memory subsystems do this an order of magnitude more quickly than CPU memory subsystems based
on caches. Perhaps not surprisingly, the GPU memory subsystem functions (and can be optimized by the user) remarkably
similarly to the memory subsystem of the original Cray supercomputer vector processors.

Early examples of CFD calculations on GPUs are discussed in [1–3]. However, the GPU architectures have been evolving
rapidly since that time in many different areas [4–7]. More recent CFD implementations that involve the CUDA programming
paradigm are discussed in Elsen et al. [8] and Corrigan et al. [9]. Micikevicius [10] applied 3D finite difference computation
using CUDA on 4 GPUs and achieved linear speedup for up to four GPUs. Rossinelli et al. [11] describe a 2D simulation using a
vortex particle method on the GPU that achieves a speedup of 25. Jacobsen et al. [12] discretized the Navier–Stokes equations
on a uniform Cartesian staggered grid with a second-order central difference scheme and achieved a 11� speedup with one
GPU compared with two quad-core CPUs on the same node. They also achieved a 130� speedup for 128 GPUs compared to
two quad-core CPUs (8 cores). In this work, a speedup of 20� is found for 192 GPUs vs. 192 CPU cores. The large reduction in
the calculation time when using GPUs makes the MPI communication time, and methods for hiding this communication
time, paramount in the following discussion.

2. Implementation

2.1. Hardware

Results for two different NSF GPU supercomputers are discussed in this work. Forge has replaced Lincoln at NCSA. It con-
tains 288 Tesla M2070 NVIDIA Fermi GPUs that each have 6 GB DDR5 memory. Forge’s 36 servers each hold two AMD Opter-
on Magny-Cours 6136 with 2.4 GHz eight-core CPUs (16 CPU cores per node) with 3 GB of RAM per core. Each server is also
connected to 8 Tesla processors via PCI-e Gen2 X16 slots. The Forge results were compiled using Red Hat Enterprise Linux 6
(Linux 2.6.32) and the GNU compiler [13]. Another GPU cluster, Keeneland Initial Delivery (KID) resides at the National Insti-
tute for Computational Science (NICS) and will become an NSF XSEDE resource in late 2012. KID has 360 Tesla M2070 NVIDIA
Fermi GPUs that each have 6 GB DDR5 memory. KID’s 120 servers each hold two 6-core Intel Xeon (Westmere-EP) 2.93 GHz
(11.72 GFlops) and 2 GB of DDR3 RAM per CPU core. Each server is connected to 3 Tesla processors via PCI-e Gen2 X16 slots.
Keeneland nodes are connected by an x8 InfiniBand QDR (single rail) network [14]. In both Forge and Keeneland, error-
correcting code (ECC) is on and the memory bandwidth of the GPU’s is therefore reduced by roughly 12%.

The GPU performance of these machines will be compared with calculations using the CPUs on those machines. In addi-
tion, we will also perform tests on Orion, which is an in-house GPU machine containing 4 NVIDIA 295 cards (8 GPUs). On
Orion, each GPU has 0.9 GB of memory and a theoretical bandwidth of 112 GBs. The connection between the GPUs on Orion
uses an 8� PCI-e Gen2 connection (4 GB/s) and for simplicity, the communication still uses the MPI protocol even though
this is a shared CPU memory machine. Also we replaced the first and second GPUs with GTX 480 and Tesla C2070 cards
in order to run some cases with these newer GPUs.

The low-level CFD algorithm structure is dictated by two key features of the GPU hardware. First, the GPUs read/write
memory is an order of magnitude faster when the memory is read linearly with stride 1. Random reads/writes or long strides
are comparatively slow on a GPU. In addition, each multi-processor on the GPU has some very fast on-chip memory (shared
memory) which serves essentially as an addressable program-supervised cache. CFD, like most three-dimensional PDE solu-
tion applications, requires considerable random memory accesses (even when using structured meshes) for sparse matrix–
vector multiplies. Roughly 90% of these slow random memory accesses can be eliminated by: (1) linearly reading large
chunks of data into the shared-memory space, which is fast for all accesses, (2) operating on the data in the shared-memory,
and then (3) writing the processed data back to the main GPU memory (global memory) linearly. This optimization is the key
to obtaining the roughly 20x speedup of the GPU over a CPU.

2.2. Software

The solution method uses a three-step, low-storage Runge–Kutta scheme [15] for time advancement that is second-order
accurate in time. This scheme is stable for eigenvalues on the imaginary axis less than 2, which implies CFL < 2 for advective
stability. The simulations always use a maximum CFL < 1. The diffusive terms are advanced with the trapezoidal method for
each Runge–Kutta substep, and the pressure is solved using a classical fully-discrete fractional step method [16], although an
exact fractional step method [17] is also possible. The solution of the elliptic pressure Poisson equation dominates the solu-
tion time (90%), so further details of this portion of the code are presented in Section 3, and the timing results in Section 4
also focus on this part of the algorithm. The Poisson solution in this work uses a preconditioned conjugate gradient method.
This Poisson solver allows arbitrary boundary conditions (and physically relevant flow initialization) to be computed. FFT
methods for the solution of the pressure, which are common in turbulence simulations, are restricted to fully periodic do-
mains or extremely simple wall geometries.

For the spatial discretization, a second order Cartesian staggered-mesh scheme is used. This not only conserves mass and
momentum to machine precision, but because it is a type of discrete calculus method [18] it also conserves vorticity (or cir-
culation) and kinetic energy in the absence of viscosity. As a result, there is no artificial viscosity/diffusion in this method
except that induced by the time-stepping scheme [19]. In addition, the staggered mesh discretization is free from pressure
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