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a b s t r a c t

This paper describes numerical methods for a quantum energy transport (QET) model in
semiconductors, which is derived by using a diffusion scaling in the quantum hydrody-
namic (QHD) model. We newly drive a four-moments QET model similar with a classical
ET model. Space discretization is performed by a new set of unknown variables. Numerical
stability and convergence are obtained by developing numerical schemes and an iterative
solution method with a relaxation method. Numerical simulations of electron transport in
a scaled MOSFET device are discussed. The QET model allows simulations of quantum con-
finement transport, and nonlocal and hot-carrier effects in scaled MOSFETs.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

The semiconductor devices are scaled down into the nanoscale regime to achieve high circuit performance in the future
integrated system. The performance of nanoscale semiconductor devices primarily relies on carrier transport properties in
the short channels. Quantum energy transport (QET) models have been developed to understand such physical phenomena
in scaled semiconductor devices. A full QET model has been derived from the collisional Wigner–Boltzmann equations using
the entropy minimization principle [1]. Numerical simulations using this model, however, have not been performed [2]. Sim-
plified QET models have been proposed as the energy transport extension of the quantum drift diffusion (QDD) model with
Fourier law closure and numerically investigated [3,4]. In Ref. [4], the carrier temperature in the current density is further
approximated by the lattice temperature to bring the model into a self-adjoint form.

In this paper, we develop numerical methods for a QET model derived from a quantum hydrodynamic (QHD) model. To
overcome the difficulties associated with the Fourier law closure, we newly derive a four-moments QET model similar with a
classical energy transport (ET) model [5]. The numerical stability is achieved by developing numerical schemes and an iter-
ative solution method in terms of a new set of variables. Numerical results in a scaled MOSFET are demonstrated.

The paper is organized as follows: In Section 2, a four-moments QET model is derived from the QHD model. In Section 3,
we present nonlinear discretization schemes and an iterative solution method to solve the QET system. In Section 4, numer-
ical simulations of electron transport in a scaled MOSFET are discussed. Some conclusions are addressed in Section 5.

2. 4 Moments quantum energy transport model

The QET models are obtained by using a diffusion scaling in the quantum hydrodynamic equations, similar as in the clas-
sical hydrodynamic model [5]. The QHD model has been derived from the collisional Wigner-Boltzmann equations, assuming
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Fourier law closure [6]. For classical hydrodynamic simulations, the closure relation based on the four-moments of the Boltz-
mann equation has been discussed [7–9], and the four-moments ET models are developed for simulations of thin body MOS-
FETs [5,10]. In this work, we derive a four-moments QET model from four moments equations derived from the collisional
Wigner–Boltzmann equation.

For simplicity, we consider only the case of electrons. The four moment equations have the same form as the classical
hydrodynamic equations [7],

@tnþr � ðnvÞ ¼ nCn; ð1Þ

@tðnpÞ þ r � ðnUÞ � nFE ¼ nCp; ð2Þ

@tðnwÞ þ r � ðnSÞ � nv � FE ¼ nC�; ð3Þ

r � ðnRÞ � nðwI þ UÞ � FE ¼ nCp�; ð4Þ

where n;p, and w are the electron density, momentum, and kinetic energy, respectively. v;U; S and R are the velocity, second
moment tensor, energy flow, and fourth moment tensor, respectively. I is the identity tensor. FE ¼ �qE, where E is the electric
field. Cn;Cp;C�, and Cp� are the electron generation rate, the production of crystal momentum, the energy production, and the
production of the energy flux, respectively. (1), (2), (3), and (4) represent conservation of particles, momentum, energy, and
energy flux, respectively. By assuming parabolic bands, we give the following closure relations for p and U as

p ¼ mv; ð5Þ

Uij ¼ mv iv j �
Pij

n
; ð6Þ

where m is an effective mass. The quantum correction to the stress tensor Pij was proposed by Ancona and Iafrate [11], and
the quantum correction to the energy density W ¼ nw was first derived by Wigner [12], which are given by
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where Tn and �h are the electron temperature and Plank’s constant, respectively.
For the collision terms, we employ a macroscopic relaxation time approximation to drive a QET model as follows:

Cn ¼ 0; ð9Þ

Cp ¼ �
p
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; ð10Þ

C� ¼ �
w�w0

s�
; ð11Þ

where sp and s� are the momentum and energy relaxation times, respectively. Substituting (5)–(7) into (1) and (2), we obtain
moment equations for conservation of electron number and momentum
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We further get the following relation:
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With the relation (14), the quantum correction term in (13) is written as

� �h2

12m
@

@xi
n

@2

@xi@xj
log n ¼ � �h2n

6m
@

@xi

1ffiffiffi
n
p @2

@x2
j

ffiffiffi
n
p

 !
¼ �qn

@

@xi
cn; ð15Þ

where the term

cn ¼
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