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a b s t r a c t

In this paper, we focus our attention on deriving and analyzing an efficient energy-preserv-
ing formula for the system of nonlinear oscillatory or highly oscillatory second-order
differential equations q00ðtÞ þMqðtÞ ¼ f qðtÞð Þ, where M is a symmetric positive semi-definite
matrix with Mk k � 1 and f ðqÞ ¼ �rqUðqÞ is the negative gradient of a real-valued function
UðqÞ. This system is a Hamiltonian system with the Hamiltonian Hðp; qÞ ¼ 1

2 pT pþ 1
2 qT Mqþ

UðqÞ. The energy-preserving formula exactly preserves the Hamiltonian. We analyze in
detail the properties of the energy-preserving formula and propose new efficient energy-
preserving integrators in the sense of numerical implementation. The convergence analysis
of the fixed-point iteration is presented for the implicit integrators proposed in this paper. It
is shown that the convergence of implicit Average Vector Field methods is dependent on
Mk k, whereas the convergence of the new energy-preserving integrators is independent

of Mk k. The Fermi–Pasta–Ulam problem and the sine–Gordon equation are carried out
numerically to show the competence and efficiency of the novel integrators in comparison
with the well-known Average Vector Field methods in the scientific literature.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

The recent growth of geometric numerical integration has resulted in the development of numerical solution of differen-
tial equations which systematically incorporate qualitative features of the original problem into their structure. It has been
realized that a numerical method should be designed to preserve as much as possible the physical/geometric properties of
the problem. We refer the reader to [20,34] for a good theoretical foundation of structure-preserving algorithms for ordinary
differential equations. The behavior of first integrals under numerical integration has been discussed for a long time.
Examples include automatic preservation of linear integrals by all Runge–Kutta methods, automatic preservation of
quadratic integrals by some (the symplectic) Runge–Kutta (–Nyström) methods, some exponential integrators and some
linearization-preserving integrators. We refer the reader to [36,10,8,21,30,27,26] for example on this subject. With this back-
ground, we pay attention to the numerical methods that preserve energy in Hamiltonian systems. For the Hamiltonian
differential equations
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q0 ¼ J�1rHðqÞ; ð1Þ

where J is a skew-symmetric constant matrix and rHðqÞ is the gradient of the Hamiltonian HðqÞ, the Average Vector Field
(AVF) formula is first written down in [29] and is defined as

qnþ1 ¼ qn þ h
Z 1

0
J�1rH ð1� sÞqn þ sqnþ1

� �
ds: ð2Þ

The authors in [11] showed the existence of energy-preserving B-series methods. The AVF formula is identified as an energy-
preserving integrator and as a B-series method in [33]. The AVF formula exactly preserves the energy for an arbitrary
Hamiltonian H and only needs evaluations of the vector field. Following [33], we refer the reader to [5,7,18,6] for more
research work about the AVF formula. Another interesting class of energy-preserving integrators are ‘‘extended collocation
methods’’ and ‘‘Hamiltonian boundary value methods’’, which exactly preserve energy of polynomial Hamiltonian systems
(see, e.g., [3,23–25,4]).

In this paper, we are concerned with efficient energy-preserving integrators for the system of nonlinear oscillatory
second-order differential equations of the form

q00ðtÞ þMqðtÞ ¼ f qðtÞð Þ; t 2 ½t0; T�;
qðt0Þ ¼ q0; q0ðt0Þ ¼ q00;

�
ð3Þ

where M is a d� d symmetric positive semi-definite matrix with Mk k � 1 and f : Rd ! Rd is the negative gradient of a real-
valued function UðqÞ and is a nonlinear mapping in general. In this paper �k k denotes the Euclidean norm. This kind of system
usually arises in various fields of science and technology, such as applied mathematics, mechanics, physics, astronomy,
molecular biology and engineering. As a typical example, when the method of lines is applied to wave equations, where
spatial derivatives are approximated by appropriate finite difference formulas, this converts each partial differential
equation (PDE) into a set of coupled oscillatory or highly oscillatory ordinary differential equations (ODEs) in time. Another
typical example is the well-known Fermi–Pasta–Ulam problem [12], which is an important model of nonlinear classical and
quantum systems of interacting particles in the physics of nonlinear phenomena. Obviously, the system (3) is simply the
following initial value problem of oscillatory Hamiltonian system

q0 ¼ rpHðp; qÞ;
p0 ¼ �rqHðp; qÞ;
qðt0Þ ¼ q0;pðt0Þ ¼ p0

8><
>: ð4Þ

with the Hamiltonian (see [9])

Hðp; qÞ ¼ 1
2

pT pþ 1
2

qT Mqþ UðqÞ: ð5Þ

We use the superscript T denote the transpose of a vector or a matrix throughout this paper.
In recent years there has been an enormous advance in dealing with the oscillatory system (3) and some useful

approaches to constructing Runge–Kutta–Nyström (RKN) type methods have been proposed. We refer the reader to
[16,15,22,19,14,37–39,46,48,44,28] for example. Very recently, the authors in [47] took account of the special structure of
system (3) brought by the linear term Mq and formulated a standard form of the multidimensional ERKN methods (extended
RKN methods). The ERKN methods perform numerically much better than the classical RKN methods due to taking advan-
tage of the special structure of the equation brought by the linear term Mq. Then the symplecticity conditions for ERKN
methods are investigated and presented in [45]. It is important to note that the symplecticity conditions for ERKN methods
reduce to those for the classical RKN methods when M ¼ 0d�d. It is known that the symplectic ERKN methods cannot exactly
preserve the Hamiltonian of the system (4) in general.

If we apply the AVF formula (2) to the Hamiltonian system (4) or (3), then we have

qnþ1 ¼ qn þ hpn þ
h2

2

Z 1

0
g ð1� sÞqn þ sqnþ1

� �
ds;

pnþ1 ¼ pn þ h
Z 1

0
g ð1� sÞqn þ sqnþ1

� �
ds;

ð6Þ

where

gðqÞ ¼ �Mq�rqUðqÞ ¼ �Mqþ f ðqÞ:

However, the AVF formula (6) for the Hamiltonian system (4) takes no account of the special structure brought by the linear
term Mq of the system (4), or (3), equivalently. The energy-preserving numerical methods taking advantage of the special
structure have not been well investigated so far. We notice that the linear term Mq now becomes a part of the integrand
in the AVF formula (6) which makes the trouble in applications since the practical AVF methods are all implicit and the
iterations are inevitable in general. In fact, the linear term Mq in AVF formula (6) will lead to the serious obstacle for the
convergence of the fixed-point iteration. The snag with this linear term under the integral in the AVF formula (6) is that
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