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enous free (interfacial) energy density is proposed. A semi-implicit Euler scheme for the
time-integration is applied which results in a system coupling a quasi-Stokes or Oseen-
type problem for the fluid flow to a variational inequality for the concentration and the
chemical potential according to the Cahn-Hilliard model [16]. A Moreau-Yosida regulari-
zation is employed which relaxes the constraints contained in the variational inequality
and, thus, enables semi-smooth Newton solvers with locally superlinear convergence in
function space. Moreover, upon discretization this yields a mesh independent method
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Double obstacle potential for a fixed relaxation parameter. For the finite dimensional approximation of the concen-
Moreau-Yosida regularization tration and the chemical potential piecewise linear and globally continuous finite elements
Semismooth Newton method are used, and for the numerical approximation of the fluid velocity Taylor-Hood finite ele-

ments are employed. The paper ends by a report on numerical examples showing the effi-
ciency of the new method.
© 2012 Elsevier Inc. All rights reserved.

1. Introduction

In the present work we consider a diffuse interface model for the description of the hydrodynamics of two-phase flows,
which is related to model ‘H’ in the nomenclature of Hohenberg and Halperin [35]. It can be found, e.g., in [1] and reads:
Find (c(t,x), w(t,x),u(t,x), p(t,x)) such that

8[u—%Au+u-Vu+Vp+KCVW:O inQr:=Qx(0,T), (1.1)
divu=0 in Qr, (12)
f)tc—%v-(b(c)Vw) +uVec=0 in Qr, (1.3)
w=®d'(c) —y*Ac in Qr, (1.4)
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c(x,0)=c"(x), u(x,0)=u’(x) Vx € Q, (1.5)

ohec=0w=0, u=g onodQx(0,T). (1.6)
Here Q C R", n € {1,2,3}, is the bounded convex polygonal flow domain with boundary dQ and outer unit normal v. We
note that more general domains with sufficiently smooth boundary may be used as well. The function
_ Ca —Cp
T catcp’

defined on Qr, denotes the concentration order parameter associated with the mass concentrations ¢, and cz in the fluid
phases A and B, respectively. It satisfies c = c(t,x) € [-1,1] and c = 1 in the pure A-phase and ¢ = —1 in the pure B-phase
region, respectively. Initially, i.e. for t = 0, we assume that the concentration equals c°. The quantity w represents the chem-
ical potential, u denotes the mean flow velocity field, i.e. u = %UA + %ug, where u, and up are the fluid velocities in the
fluid phases A and B, respectively, and p denotes the pressure of the fluid. The flow profile at t = 0 is given by u®. The bound-
ary values g have to satisfy g- v = 0 and are assumed to satisfy g = 0 in the following. The Péclet number Pe, the Reynolds
number Re and the capillary number K are given constants. The given parameter 7 is related to the width of the interface
region. The mobility function b(-) is assumed to be equal to 1 but other situations can be motivated by practical applications
and are considered for example in [3].

The homogeneous free energy density is denoted by ®(c) and in this paper it is chosen to be of double-obstacle type as
proposed in [6] (see also [19]), i.e.

_Jia=¢c) ifcel[-1,1],
®0 = {ioo ifc ¢ [-1,1].

In the literature, alternative choices of the homogeneous free energy density are known with the double-well [22] and the
logarithmic potential [16] being two common alternatives. Note that in contrast to the double-obstacle potential, the dou-
ble-well potential allows the unphysical situation of |c| > 1. The logarithmic potential, on the other hand, usually prevents
reaching the pure phases due to the barrier nature of the involved logarithm. When ®(c) is chosen to be the double-obstacle
potential, then (1.4) becomes

w+ 72 Ac € 9d(c) (1.7)
where 9@ is the subdifferential of ®. Let us recall that the subdifferential I <1;(») of the indicator functional
07 ‘ v |< 17
I V) =
<1} (2) { o, else,
defined on H'(Q) for | v |< 1 a.e. in Q consists of all functionals ¢ € H'(Q)", the dual space of H'(Q), satisfying (¢,z — v) <0

for all ze H'(Q),| z|< 1 a.e. in Q. It then follows from subdifferential calculus (see e.g. [24]) that the potential Eq. (1.7) is
equivalent to

lcf<TaeinQ(-y’Ac—w-c,v-c) >0 Vv e{veH @)y <1 ae inQ}. (1.8)

Here and below, ‘a.e. in Q' stands for 'almost everywhere in ’ indicating that the associated relation holds true except on a
subset of Q which has (Lebesgue-) measure zero.
In what follows, L*(Q) denotes the space of measurable functions whose square is Lebesgue integrable with inner product

(-,-) and norm || - ||. By L(ZO)(Q) c L*(Q) we denote the subspace of functions with vanishing mean value and H"(Q), m > 1,
represents the usual Hilbert space of functions in L?(Q) with distributional derivatives of order less or equal m contained in
[*(Q). The norm in H™(Q) is denoted by || - |,,. We define H}(Q) by

Hy(Q) = {v e H'(Q)|v = 0 on 8Q},
where the boundary condition holds true in the sense of traces. Let H"(Q) = (H"(Q))" and analogously for Hf' (Q). The dual
spaces of Hy(Q) and H}(Q) are denoted by H™'(Q) and H™'(Q), respectively. For D c Q we denote by (-, Vmps I lmp and | - [ p
the usual inner-product, the norm and the semi-norm in H™ (D), respectively.

Furthermore we set

V={veH Q)(1)=0}
and

K={veH (Q)v <1ae. in Q}.

For more information on Lebesgue and Sobolov spaces we refer the reader to [2].
Based on the above definitions and conventions, the variational form of (1.1)-(1.6) reads:
Find (c(t), w(t), u(t),p(t)) in K x H'(Q) x Hy(Q) x Lf (Q) such that



Download English Version:

https://daneshyari.com/en/article/6933923

Download Persian Version:

https://daneshyari.com/article/6933923

Daneshyari.com


https://daneshyari.com/en/article/6933923
https://daneshyari.com/article/6933923
https://daneshyari.com

