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a b s t r a c t

An adaptive a posteriori error estimator based finite element method for the numerical
solution of a coupled Cahn–Hilliard/Navier–Stokes system with a double-obstacle homog-
enous free (interfacial) energy density is proposed. A semi-implicit Euler scheme for the
time-integration is applied which results in a system coupling a quasi-Stokes or Oseen-
type problem for the fluid flow to a variational inequality for the concentration and the
chemical potential according to the Cahn–Hilliard model [16]. A Moreau–Yosida regulari-
zation is employed which relaxes the constraints contained in the variational inequality
and, thus, enables semi-smooth Newton solvers with locally superlinear convergence in
function space. Moreover, upon discretization this yields a mesh independent method
for a fixed relaxation parameter. For the finite dimensional approximation of the concen-
tration and the chemical potential piecewise linear and globally continuous finite elements
are used, and for the numerical approximation of the fluid velocity Taylor–Hood finite ele-
ments are employed. The paper ends by a report on numerical examples showing the effi-
ciency of the new method.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

In the present work we consider a diffuse interface model for the description of the hydrodynamics of two-phase flows,
which is related to model ‘H’ in the nomenclature of Hohenberg and Halperin [35]. It can be found, e.g., in [1] and reads:

Find (cðt; xÞ;wðt; xÞ;uðt; xÞ; pðt; xÞ) such that

@tu�
1
Re

Duþ u � ruþrpþ Kcrw ¼ 0 in XT :¼ X� ð0; TÞ; ð1:1Þ

divu ¼ 0 in XT ; ð1:2Þ

@tc �
1
Pe
r � ðbðcÞrwÞ þ urc ¼ 0 in XT ; ð1:3Þ

w ¼ U0ðcÞ � c2Dc in XT ; ð1:4Þ
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cðx;0Þ ¼ c0ðxÞ; uðx;0Þ ¼ u0ðxÞ 8x 2 X; ð1:5Þ

@mc ¼ @mw ¼ 0; u ¼ g on @X� ð0; TÞ: ð1:6Þ

Here X � Rn; n 2 f1;2;3g, is the bounded convex polygonal flow domain with boundary @X and outer unit normal m. We
note that more general domains with sufficiently smooth boundary may be used as well. The function

c ¼ cA � cB

cA þ cB
;

defined on XT , denotes the concentration order parameter associated with the mass concentrations cA and cB in the fluid
phases A and B, respectively. It satisfies c ¼ cðt; xÞ 2 ½�1;1� and c � 1 in the pure A-phase and c � �1 in the pure B-phase
region, respectively. Initially, i.e. for t ¼ 0, we assume that the concentration equals c0. The quantity w represents the chem-
ical potential, u denotes the mean flow velocity field, i.e. u ¼ 1þc

2 uA þ 1�c
2 uB, where uA and uB are the fluid velocities in the

fluid phases A and B, respectively, and p denotes the pressure of the fluid. The flow profile at t ¼ 0 is given by u0. The bound-
ary values g have to satisfy g � m ¼ 0 and are assumed to satisfy g � 0 in the following. The Péclet number Pe, the Reynolds
number Re and the capillary number K are given constants. The given parameter c is related to the width of the interface
region. The mobility function bð�Þ is assumed to be equal to 1 but other situations can be motivated by practical applications
and are considered for example in [3].

The homogeneous free energy density is denoted by UðcÞ and in this paper it is chosen to be of double-obstacle type as
proposed in [6] (see also [19]), i.e.

UðcÞ :¼
1
2 ð1� c2Þ if c 2 ½�1;1�;
þ1 if c R ½�1;1�:

(

In the literature, alternative choices of the homogeneous free energy density are known with the double-well [22] and the
logarithmic potential [16] being two common alternatives. Note that in contrast to the double-obstacle potential, the dou-
ble-well potential allows the unphysical situation of jcj > 1. The logarithmic potential, on the other hand, usually prevents
reaching the pure phases due to the barrier nature of the involved logarithm. When UðcÞ is chosen to be the double-obstacle
potential, then (1.4) becomes

wþ c2Dc 2 @UðcÞ ð1:7Þ

where @U is the subdifferential of U. Let us recall that the subdifferential @Ifjcj61gðvÞ of the indicator functional

Ifjcj61gðvÞ :¼
0; j v j6 1;
1; else;

�

defined on H1ðXÞ for j v j6 1 a.e. in X consists of all functionals n 2 H1ðXÞ�, the dual space of H1ðXÞ, satisfying hn; z� vi 6 0
for all z 2 H1ðXÞ; j z j6 1 a.e. in X. It then follows from subdifferential calculus (see e.g. [24]) that the potential Eq. (1.7) is
equivalent to

jcj 6 1 a:e: in X; �c2Dc �w� c;v � c
� �

P 0 8v 2 fv 2 H1ðXÞjjvj 6 1 a:e: in Xg: ð1:8Þ

Here and below, ‘a.e. in X’ stands for ’almost everywhere in X’ indicating that the associated relation holds true except on a
subset of X which has (Lebesgue-) measure zero.

In what follows, L2ðXÞ denotes the space of measurable functions whose square is Lebesgue integrable with inner product
ð�; �Þ and norm k � k. By L2

ð0ÞðXÞ � L2ðXÞ we denote the subspace of functions with vanishing mean value and HmðXÞ; m P 1,

represents the usual Hilbert space of functions in L2ðXÞ with distributional derivatives of order less or equal m contained in
L2ðXÞ. The norm in HmðXÞ is denoted by k � km. We define H1

0ðXÞ by

H1
0ðXÞ ¼ fv 2 H1ðXÞjv ¼ 0 on @Xg;

where the boundary condition holds true in the sense of traces. Let HmðXÞ ¼ ðHmðXÞÞn and analogously for Hm
0 ðXÞ. The dual

spaces of H1
0ðXÞ and H1

0ðXÞ are denoted by H�1ðXÞ and H�1ðXÞ, respectively. For D � X we denote by ð�; �Þm;D; k � km;D and j � jm;D
the usual inner-product, the norm and the semi-norm in HmðDÞ, respectively.

Furthermore we set

V ¼ fv 2 H1ðXÞjðv ;1Þ ¼ 0g

and

K ¼ fv 2 H1ðXÞjjv j 6 1 a:e: in Xg:

For more information on Lebesgue and Sobolov spaces we refer the reader to [2].
Based on the above definitions and conventions, the variational form of (1.1)–(1.6) reads:
Find (cðtÞ;wðtÞ;uðtÞ; pðtÞ) in K� H1ðXÞ �H1

0ðXÞ � L2
ð0ÞðXÞ such that
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