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a b s t r a c t

We introduce a new methodology for adding localized, space–time smooth, artificial vis-
cosity to nonlinear systems of conservation laws which propagate shock waves, rarefac-
tions, and contact discontinuities, which we call the C-method. We shall focus our
attention on the compressible Euler equations in one space dimension. The novel feature
of our approach involves the coupling of a linear scalar reaction–diffusion equation to
our system of conservation laws, whose solution Cðx; tÞ is the coefficient to an additional
(and artificial) term added to the flux, which determines the location, localization, and
strength of the artificial viscosity. Near shock discontinuities, Cðx; tÞ is large and localized,
and transitions smoothly in space–time to zero away from discontinuities. Our approach is
a provably convergent, spacetime-regularized variant of the original idea of Richtmeyer
and Von Neumann, and is provided at the level of the PDE, thus allowing a host of numer-
ical discretization schemes to be employed.

We demonstrate the effectiveness of the C-method with three different numerical imple-
mentations and apply these to a collection of classical problems: the Sod shock-tube, the
Osher–Shu shock-tube, the Woodward–Colella blast wave and the Leblanc shock-tube.
First, we use a classical continuous finite-element implementation using second-order dis-
cretization in both space and time, FEM-C. Second, we use a simplified WENO scheme
within our C-method framework, WENO-C. Third, we use WENO with the Lax–Friedrichs
flux together with the C-equation, and call this WENO-LF-C. All three schemes yield
higher-order discretization strategies, which provide sharp shock resolution with minimal
overshoot and noise, and compare well with higher-order WENO schemes that employ
approximate Riemann solvers, outperforming them for the difficult Leblanc shock tube
experiment.

Published by Elsevier Inc.

1. Introduction

1.1. Smoothing conservation laws

The initial-value problem for a general nonlinear system of conservation laws can be written as an evolution equation,

@tUðx; tÞ þ div FðUðx; tÞÞ ¼ 0 with Ujt¼0 ¼ U0; ð1Þ

for an m-vector U defined on (D + 1)-dimensional space–time. Such partial differential equations (PDE) are both ubiquitous
and fundamental in science and engineering, and include the compressible Euler equations of gas dynamics, the

0021-9991/$ - see front matter Published by Elsevier Inc.
http://dx.doi.org/10.1016/j.jcp.2012.08.027

⇑ Corresponding author. Tel.: +1 530 554 2632.
E-mail addresses: reisner@lanl.gov (J. Reisner), jserencs@math.ucsd.edu (J. Serencsa), shkoller@math.ucdavis.edu (S. Shkoller).

Journal of Computational Physics 235 (2013) 912–933

Contents lists available at SciVerse ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp

http://dx.doi.org/10.1016/j.jcp.2012.08.027
mailto:reisner@lanl.gov
mailto:jserencs@math.ucsd.edu
mailto:shkoller@math.ucdavis.edu
http://dx.doi.org/10.1016/j.jcp.2012.08.027
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp


magneto-hydrodynamic (MHD) equations modeling ionized plasma, the elasticity equations of solid mechanics, and
numerous related physical systems which possess complicated nonlinear wave interactions.

It is well known that solutions of (1) can develop finite-time shocks, even when the initial data is smooth, in which case,
discontinuities of U are propagated according to the so-called Rankine-Hugoniot conditions (see Section 2.1). It is important
to develop stable and robust numerical algorithms which can approximate shock-wave solutions. Even in one-space dimen-
sion, nonlinear wave interaction such as two shock waves colliding, is a difficult problem when considering accuracy, sta-
bility and monotonicity. The challenge is maintaining higher-order accuracy away from the shock while approximating
the discontinuity in an order-Dx smooth transition region where Dx denotes the spatial grid size.

As we describe below, a variety of clever discretization schemes have been developed and employed, particularly in one-
space dimension, to approximate discontinuous solution profiles in an essentially non-oscillatory (ENO) fashion. These in-
clude, but are not limited to, total variation diminishing (TVD) schemes, flux-corrected transport (FCT) schemes, weighted
essentially non-oscillatory (WENO) schemes, discontinuous Galerkin methods, artificial diffusion methods, exact and
approximate Riemann solvers, and a host of variants and combinations of these techniques.

We develop a robust parabolic-type regularization of (1), which we refer to as the C-method, which couples a modified set
of m equations for U with an additional linear scalar reaction–diffusion equation for a new scalar field Cðx; tÞ. Thus, instead of
(1) we consider a system of m + 1 equations, which use the solution Cðx; tÞ as a coefficient in a carefully chosen modification
of the flux. As we describe in detail below, the solution Cðx; tÞ is highly localized in regions of discontinuity, and transitions
smoothly (in both x and t) to zero in regions wherein the solution is smooth. Further, as Dx! 0, we recover the original
hyperbolic nonlinear system of conservation laws (1).

1.2. Numerical discretization

In the case of 1-D gas dynamics, the construction of non-oscillatory, higher-order, numerical algorithms such as ENO by
Harten et al. [1] and Shu and Osher [2,3]; WENO by Liu et al. [4] and Jiang and Shu [5]; MUSCL by Van Leer [6], Colella [7], and
Huynh [8]; or PPM by Colella and Woodward [9] requires carefully chosen reconstruction and numerical flux.

Such numerical methods evolve cell-averaged quantities; to calculate an accurate approximation of the flux at cell-
interfaces, these schemes reconstruct kth-order (k P 2) polynomial approximations of the solution (and hence the flux) from
the computed cell-averages, and thus provide kth-order accuracy away from discontinuities. See, for example, the conver-
gence plots of Greenough and Rider [10] and Liska and Wendroff [11]. Given a polynomial representation of the solution,
a strategy is chosen to compute the most accurate cell-interface flux, and this is achieved by a variety of algorithms. Centered
numerical fluxes, such as Lax–Friedrichs, add dissipation as a mechanism to preserve stability and monotonicity. On the
other hand, characteristic-type upwinding based upon exact (Godunov) or approximate (Roe, Osher, HLL, HLLC) Riemann
solvers, which preserve monotonicity without adding too much dissipation, tend to be rather complex and PDE-specific;
moreover, for strong shocks, other techniques may be required to dampen post-shock oscillations or to yield entropy-
satisfying approximations (see Quirk [12]). Again, we refer the reader to the papers [10,11] or Colella and Woodward [13]
for a thorough overview, as well as a comparison of the effectiveness of a variety of competitive schemes.

Majda and Osher [14] have shown that any numerical scheme is at best, first-order accurate in the presence of shocks or
discontinuities. The use of higher-order numerical schemes is, nevertheless, imperative for the elimination of error-terms in
the Taylor expansion (in mesh-size) and the subsequent limiting of truncation error. Moreover, higher-order schemes tend to
be less dissipative than there lower-order counterparts, as discussed by Greenough and Rider [10]; therein, a comparison
between a 2nd-order PLMDE scheme and a 5th-order WENO scheme demonstrates the improved resolution of intricate fine
structure afforded by 5th-order WENO, while simultaneously providing far less clipping of local extrema than PLMDE.

In multi-D, similar tools are required to obtain non-oscillatory numerical schemes, but the multi-dimensional analogues
to those described above are generally limited by mesh considerations. For structured grids (such as products of uniform 1-D
grids), dimensional splitting is commonly used, decomposing the problem into a sequence of 1-D problems. This technique is
quite successful, but stringent mesh requirements prohibits its use on complex domains. Moreover, applications to PDE out-
side of variants of the Euler equations may be somewhat limited. For further discussion of the limitations of dimensional
splitting, we refer the reader to Crandall and Majda [15], and Jiang and Tadmor [16]. For unstructured grids, dimensional
splitting is not available and alternative approaches must be employed, necessitated by the lack of multi-D Riemann solvers.
WENO schemes on unstructured triangular grids have been developed in Hu and Shu [17], but using simplified methods,
which employ reduced characteristic decompositions, can lead to a loss of monotonicity and stability.

Algorithms that explicitly introduce diffusion provide a simple way to stabilize higher-order numerical schemes and sub-
sequently remove non-physical oscillations near shocks. In the mathematical analysis of conservation laws (and in the trun-
cation error of certain discretization schemes), the simplest parabolic-regularization is by the addition of a uniform linear
viscosity. Choosing a constant b > 0, which depends upon mesh-size Dx and sometimes velocity or wave-speed, and adding

bðDxÞ@2
x Uðx; tÞ ð2Þ

to the right hand side of (1) provides a uniformly parabolic regularization of the hyperbolic conservation laws, and its dis-
crete implementation smears sharp discontinuities across OðDxÞ-regions and thus adds stabilization, but unfortunately, at the
cost of accuracy. With the addition of uniform linear viscosity, shocks and discontinuities are captured in a non-oscillatory
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