
Specifying model transformations by direct
manipulation using concrete visual notations
and interactive recommendations$

Iman Avazpour a,n, John Grundy a,n, Lars Grunske b

a Centre for Computing and Engineering Software and Systems (SUCCESS), Swinburne University of Technology, Hawthorn 3122, VIC,
Australia
b Institute of Software Technology, Universität Stuttgart, Universitätsstraß e 38, D-70569 Stuttgart, Germany

a r t i c l e i n f o

Article history:
Received 15 October 2014
Received in revised form
27 January 2015
Accepted 19 February 2015
Available online 27 February 2015

Keywords:
Model driven engineering
Model transformation
Visual notation
Recommender system
Concrete visualizations

a b s t r a c t

Model transformations are a crucial part of Model-Driven Engineering (MDE) technologies
but are usually hard to specify and maintain for many engineers. Most current approaches
use meta-model-driven transformation specification via textual scripting languages. These
are often hard to specify, understand and maintain. We present a novel approach that
instead allows domain experts to discover and specify transformation correspondences
using concrete visualizations of example source and target models. From these example
model correspondences, complex model transformation implementations are automati-
cally generated. We also introduce a recommender system that helps domain experts and
novice users find possible correspondences between large source and target model
visualization elements. Correspondences are then specified by directly interacting with
suggested recommendations or drag and drop of visual notational elements of source and
target visualizations. We have implemented this approach in our prototype tool-set,
CONVErT, and applied it to a variety of model transformation examples. Our evaluation of
this approach includes a detailed user study of our tool and a quantitative analysis of the
recommender system.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Model transformation plays a significant role in the rea-
lization of Model Driven Engineering (MDE). Current MDE
approaches require specifying correspondences between
source and target models using textual scripting languages
and the abstract representations of meta-modeling languages.
Although these abstractions provide better generalization, and

hence code reduction, they introduce difficulties for many
potential transformation specification users. This is because in
order to effectively use them, users have to possess in-depth
knowledge of transformation languages and meta-modeling
language syntax. These are often very far removed from the
actual concretemodel syntax for the target domain. Moreover,
taking into account large models being used in today's soft-
ware systems, many transformation specifications are very
complex and challenging to specify and then maintain, even
for experienced transformation script and meta-model users
[1–3]. Although some approaches have been developed to
mitigate these problems, such as by using visual abstractions
[4,5], by-example transformations [3,6,7], graph transfo-
rmations [8–11], automatic inference of bi-directional

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jvlc

Journal of Visual Languages and Computing

http://dx.doi.org/10.1016/j.jvlc.2015.02.005
1045-926X/& 2015 Elsevier Ltd. All rights reserved.

☆ This paper has been recommended for acceptance by Shi Kho Chang.
n Corresponding author.
E-mail addresses: iavazpour@swin.edu.au (I. Avazpour),

jgrundy@swin.edu.au (J. Grundy),
lars.grunske@informatik.uni-stuttgart.de (L. Grunske).

Journal of Visual Languages and Computing 28 (2015) 195–211

www.sciencedirect.com/science/journal/1045926X
www.elsevier.com/locate/jvlc
http://dx.doi.org/10.1016/j.jvlc.2015.02.005
http://dx.doi.org/10.1016/j.jvlc.2015.02.005
http://dx.doi.org/10.1016/j.jvlc.2015.02.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jvlc.2015.02.005&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jvlc.2015.02.005&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jvlc.2015.02.005&domain=pdf
mailto:iavazpour@swin.edu.au
mailto:jgrundy@swin.edu.au
mailto:lars.grunske@informatik.uni-stuttgart.de
http://dx.doi.org/10.1016/j.jvlc.2015.02.005


transformations [12,13], and automated assistance for map-
ping correspondence deduction [14], none of these fully
address the problems nor do so in an integrated, visual,
human-centric and highly extensible way.

We introduce a new approach that helps to better inco-
rporate user's domain knowledge by providing them with
familiar concrete model visualizations for use during model
visualization and transformation generation. This approach
follows the three principles of direct manipulation [15], i.e. (1)
it provides support for generating concrete visualizations of
example source and target models; (2) these visualizations
allow user interaction in the form of drag and drop of their
concrete visual notation elements; and (3) interactions are
automatically translated into transformation code and hence
direct coding in complex transformation scripting languages
is avoided. In addition, to better aid users in finding corres-
pondences in large model visualizations, an automatic reco-
mmender system is introduced that provides suggestions for
possible correspondences between source and target model
elements. Complex model transformation code is automati-
cally generated from the user's interaction with concrete
visual notations and suggested recommendations.

This paper is organized as follows: Section 2 gives a moti-
vating example, our key research questions and the require-
ments being addressed by the research reported in this paper.
Section 3 briefly discusses key related work. Section 4 outlines
our approach to model transformation generation followed by
a usage example in Section 5. Section 6 describes the archi-
tecture and implementation of our approach in CONcrete
Visual assistEd Transformation (CONVErT) framework. Section
7 describes our evaluation and user-study setup and is foll-
owed by a discussion in Section 8. Finally Section 9 concludes
the paper with a summary.

2. Motivation

Assume Tom, a software developer, is working in an MDE-
using team and has received a system analysis report for an
application. Being an expert in UML diagram interpretation
and a Java coder, he is familiar with concrete syntax of the
diagrams and Java code. He is interested in transforming
specific parts of UML diagrams provided by the analysis dir-

ectly to his programming code, to increase team productivity,
code quality and to ease software evolution. For example, he
wants to create a model to code translator in order to tran-
sform specific features and parts in the analysis diagrams to
specific Java code templates. For Tom, as an expert in the
domain, corresponding elements in the UML diagram and in
his Java code are obvious. He can clearly spot and relate
classes, methods, and even statement snippets in both pro-
gram code and class diagram. For example, he can easily relate
an attribute in a class diagram to a property in Java code and
their fine-grained elements (i.e. types, names and access
identifiers). Some such model element correspondences are
depicted in Fig. 1, using concrete visualizations of the UML
model (a class diagram) and code model (Java textual syntax).

As another example, consider Jerry, an urban planner,
who is preparing a report on traffic congestion in part of a
city. He is used to viewing volumes of vehicles crossing
intersections on screen using a geo-spatial visualization. An
Example of this visualization is shown on the left side of
Fig. 2. Here, the volume of vehicles are represented on a map
using bubbles. In his report, he would like to reflect the
volume of vehicles passing set of intersections in a particular
time instance by a pie chart. Being an expert in this domain,
he has a solid understanding of this map-based visualization
and pie charts and therefore their corresponding relation-
ships are obvious to him. He would like to relate the number
reflected to each bubble to a pie piece in a pie chart and
generate new visualizations for his report as shown in Fig. 2.

Given that Tom and Jerry may not have experience or
knowledge of transformation languages, meta-modeling,

Fig. 1. Example of correspondence relations between a Class Diagram and Java code. Dashed arrows show more fine-grained correspondences.

Fig. 2. Example of correspondence relations between geo-located bub-
bles and pie pieces in a pie chart.

I. Avazpour et al. / Journal of Visual Languages and Computing 28 (2015) 195–211196



Download English Version:

https://daneshyari.com/en/article/6934784

Download Persian Version:

https://daneshyari.com/article/6934784

Daneshyari.com

https://daneshyari.com/en/article/6934784
https://daneshyari.com/article/6934784
https://daneshyari.com

