Parallel Computing 75 (2018) 28-40

Contents lists available at ScienceDirect z . :
Parallel Computing
journal homepage: www.elsevier.com/locate/parco
Introducing the explicitly many-processor approach n
e
Janos Végh ,
University of Miskolc, Hungary
ARTICLE INFO ABSTRACT
AffiCl}’ history: The deeper reasons of the present stalling in computing is scrutinized, and to enhance the
Received 3 July 2015 single-processor performance, a new approach explicitly considering the presence of sev-

Revised 1 February 2016
Accepted 1 March 2018
Available online 9 March 2018

eral computing units is introduced, as opposed to the presently exclusively used, 70-years
old single-processor approach. The appearance of many-core processors, having many pro-
cessing units in close vicinity to each other, requires to re-think some principles of com-
puting. The goal of the approach is to enhance the single-processor performance using co-

{\(/K‘.’,‘;‘if{e operating cores, rather than to introduce a new method for parallelization. Technically, it
Single thread introduces a new control layer above the cores, a new intermediate execution unit called
Performance quasi-thread, a modified compiling method and object code for transferring paralleliza-
Neumann abstractions tion information from the development system to the processor, and an on-demand self-
Hybrid architecture organizing processor architecture. The resulting processors have more effective and more
Explicitly many-processor approach “green” architecture, considerably increased single-thread performance, allow for more de-

Computing principle terministic real-time behaviour, new scheduling principles for multitasking, less operating

system overhead, etc. Surprisingly, the resulting computing stack is upward compatible
with the presently existing one.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In the past years, the development of computing seems to stall. The single-processor performance, although is still slowly
growing, in some cases is even decreasing. More and more design efforts are needed to cope with the growing complexity,
and similarly, more and more Si gates must be used to implement it, greatly contributing to the dissipation problem, and
leading to the age of “dark silicon” [1]. “...computers have thus far achieved this goal at the expense of tremendous hardware
complexity — a complexity that has grown so large as to challenge the industry’s ability to deliver ever-higher performance” [2].
For illustrational purposes, two representative manufacturers and randomly selected, publicly available data were used to
derive the data' shown in the diagrams in Fig. 1.

To quantitize the performance, one can find somewhat arbitrary merits [3]. To support our arguments, the MIPS value is
used here. One can (mostly) separate the purely architectural improvements from the technological enhancement through
dividing the MIPS value with the operating clock frequency (a kind of frequency-independent performance). This value is
shown in Fig. 1a.

Another important question is, how efficiently the architectural enhancement can be implemented. This question can be
(approximately) answered using a merit, which is given as the frequency-independent performance divided by the number

E-mail addresses: |.Vegh@uni-miskolc.hu, janos.vegh@unideb.hu
1 Obviously, the absolute numbers must not be compared for the different architectures, but the tendencies are the same even for those different
architectures.

https://doi.org/10.1016/j.parco.2018.03.001
0167-8191/© 2018 Elsevier B.V. All rights reserved.


https://doi.org/10.1016/j.parco.2018.03.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/parco
http://crossmark.crossref.org/dialog/?doi=10.1016/j.parco.2018.03.001&domain=pdf
mailto:J.Vegh@uni-miskolc.hu
mailto:janos.vegh@unideb.hu
https://doi.org/10.1016/j.parco.2018.03.001

J. Végh/Parallel Computing 75 (2018) 28-40 29

A
1 = T I
10°F 7 EZ 10'f —e— Intel 3
N r . = F —— ARM H
= F 1 = r 1
= g 1B 100k E
A 100 k ]l = < E
o 107 Bl N F ]
= F 1 B0tk 4
= F —o— Intel || = E g
’ ARM[| @ | j
10—1‘ 1 1 - I é 10—2 L 1 1 1 ]
1990 2000 2010 = 1990 2000 2010
Year Year
(a) Timeline of architectural enhancement (b) Timeline of efficiency to implement ar-
of processing performance chitectural enhancement of processing per-
formance

Fig. 1. Timeline of architectural performance and implementation efficiency of computer processors.

of transistors used in the implementation. Although the number of the transistors slightly increases also because of the ex-
tended functionality, the main reason of the increase is adding more helper units to the processor to increase performance.
This latter merit describes, how economically the needed performance enhancement can be implemented through archi-
tectural changes, see in Fig. 1b. The reciprocal of that value can be considered as a measure of architectural complexity.
These diagrams suggest that the frequency-independent performance keeps rising, but more and more efforts (more and
more complex architectures) are needed to keep the tendency. The hardware designers attempt to take over as much duties
as they can (dozens of cores, instruction level parallelism, out of order and speculative evaluation, etc.), but there is no
commonly accepted idea for making efficient really multi-processor hardware architectures: “multicore and manycore devel-
opment tool vendors and runtime systems cannot possibly support the virtually unlimited number of processor configurations”
[4].

The many-core/supercomputing direction of development offers not a real alternative for most cases: on this branch also
a lot of programmers’ efforts must be invested to organize and concert the work of the many processors, and also the par-
allel execution of the tasks must be designed in advance. However, “parallel programs ...are notoriously difficult to write, test,
analyze, debug, and verify, much more so than the sequential versions” [5]. In addition, they also show up serious efficiency
problems. The typical real-life programs show complex parallelization behaviour [6] and also the apparently massively par-
allel algorithms can behave [7] extremely ineffectively.

Since the beginning of computing, the single processor approach dominates in computing. In many-processor systems we
do have many central processing units, and a peripheral must interrupt the execution flow of the processor, although some
other core or processor would be able to do the job. Even today the many-processor computing bounds are referring to Am-
dahl’s law although the title of the paper was “Validity of the Single Processor Approach to Achieving Large-Scale Computing
Capabilities”. When Hill and Marty [8] speaks about “multicore era”, the performance is described by (a modified version
of) Amdahl’s law, although in the same study the “dynamic multicore” approach results in much better performance. Most
researchers are convinced that “Processor and network architectures are making rapid progress with more and more cores being
integrated into single processors and more and more machines getting connected with increasing bandwidth. Processors become
heterogeneous and reconfigurable. ... No current programming model is able to cope with this development, though, as they
essentially still follow the classical van Neumann model” [9)].

Essentially, this is why most experts worry, requirering “Reinventing computing” [10], asking “Computing Performance:
Game Over or Next Level?” [11], or thinking in “Rebooting computing” [12]. On the other hand, the new computing must be
compatible to some extent with the old one. In order to preserve compatibility with the existing computing, the best way
would be to modify the existing one in a way which allows taking into account the present-day achievements of technology
as well as the expectations against computing.

The present paper will show how many-core processors, using a new approach to computing, can be used to enhance
the performance of single-thread processes. Our goal is just to increase the performance of single processors utilizing a new
principle of operation, focussing on the “cooperative solution” mentioned by Amdahl [13] and targeting the “two funda-
mental issues”: latency and synchronization, identified by Arvind and lannucci [14]. As a consequence of using the many
computing resources inside the processor in a more efficient way, also increases performance of the parallelized computers.

In Section 2, the related work of potential anchestors are considered, both hardware and software activities. The Explicitly
Many-Processor Approach is introduced in Section 3. This section describes the details of the new operating principles and
their features, as well as compares the method to its predecessors, emphasizing similarities and dissimilarities. The abstract
ideas are demonstrated on a simple C language code example in Section 4, where most of the parallelism can be discovered
using the methods used in the related works, and the result can be refined using the methods suggested in this work. A
deeper perception of the operation of such a system can be acquired in Section 5, where the “object code” of an example



Download English Version:

https://daneshyari.com/en/article/6934994

Download Persian Version:

https://daneshyari.com/article/6934994

Daneshyari.com


https://daneshyari.com/en/article/6934994
https://daneshyari.com/article/6934994
https://daneshyari.com/

