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a b s t r a c t 

We present a parallel hierarchical solver for general sparse linear systems on distributed- 

memory machines. For large-scale problems, this fully algebraic algorithm is faster and 

more memory-efficient than sparse direct solvers because it exploits the low-rank struc- 

ture of fill-in blocks. Depending on the accuracy of low-rank approximations, the hierar- 

chical solver can be used either as a direct solver or as a preconditioner. The parallel algo- 

rithm is based on data decomposition and requires only local communication for updating 

boundary data on every processor. Moreover, the computation-to-communication ratio of 

the parallel algorithm is approximately the volume-to-surface-area ratio of the subdomain 

owned by every processor. We present various numerical results to demonstrate the ver- 

satility and scalability of the parallel algorithm. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Solving large sparse linear systems is an important building block – but often a computational bottleneck – in many en- 

gineering applications. Large sparse linear systems arise, for example, from local discretization of elliptic partial differential 

equations. Solving a general linear system that has N non-zeros with O ( N ) computer memory and CPU time is challenging, 

especially when the underlying physical problem is three-dimensional. Existing methods fall into three categories as follows. 

The first category of methods are sparse direct solvers [1] based on Gaussian elimination. These methods organize com- 

putation efficiently and leverage fill-reducing ordering schemes. For example, the nested dissection multifrontal algorithm 

[2,3] performs elimination according to a specific hierarchical structure of the unknowns. Because of their robustness and 

efficiency, several state-of-the-art sparse direct solvers have been implemented into software packages, which target sequen- 

tial [4–6] , shared-memory [7,8] and distributed-memory computers [9,10] . However, sparse direct solvers generally require 

O ( N 

2 ) work and O (N 

4 
3 ) computer memory for a three-dimensional problem of size N . This quadratic factorization cost and 

large memory footprint seriously limit the application of sparse direct solvers to truly large-scale problems. 

The second category consists of iterative solvers. These solvers require only O ( N ) computer memory to store the linear 

system and are thus more memory-efficient than sparse direct solvers. They can also achieve the optimal time-complexity if 
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the number of iterations is small. For example, the multigrid method [11] is typically the fastest solver for many discretized 

elliptic PDEs. However, iterative solvers have three disadvantages. First, the convergence of iterative solvers is not guaranteed 

for general linear systems. For example, the multigrid method may fail to converge for indefinite linear systems and linear 

systems coming from coupled PDEs. Second, the number of iterations may grow rapidly as the condition number of a linear 

system increases. Third, the setup phase of some iterative solvers relies on sparse matrix-sparse matrix multiplication, as in 

the algebraic multigrid method, which is complex to scale [12,13] . 

The third category of methods developed for solving sparse linear systems are hierarchical solvers [14–19] and their 

parallel counterparts [20–23] . The general idea behind these hierarchical solvers is exploiting the low-rank structure of dense 

matrix blocks that arise during the elimination process to reduce storage and computational cost. As a result of utilizing the 

data sparsity, hierarchical solvers, compared with sparse direct solvers, typically have reduced memory footprint and smaller 

computational complexity. However, some of the existing hierarchical solvers still cannot attain quasilinear complexity for 

solving three-dimensional problems, and others may be either too complicated to be implemented efficiently or may be 

restricted to only structured problems. 

In this paper, we introduce a new parallel hierarchical solver for solving general sparse linear systems. Our parallel 

algorithm is based on the sequential algorithm in [19] called LoRaSp, which computes an approximate factorization with 

sparse block-triangular factors. In particular, our method eliminates the unknowns cluster by cluster and compresses fill-in 

blocks in a hierarchical fashion. The singular values of these fill-in blocks are often found to decrease geometrically, and 

general algebraic techniques, such as the SVD, can be used to compute corresponding low-rank approximations. Since the 

dropping/truncation rule in our method is based on the decay of singular values, it is expected to be more efficient than 

other level-based or threshold-based rules, which are typically used in the incomplete LU (ILU) factorization [24] . In our 

method, the bases computed in low-rank approximations serve the same role as restriction and prolongation operators do 

in the algebraic multigrid method (AMG) [25,26] . While the construction of restriction and prolongation operators in AMG 

may require tuning and manual adjustments for a specific linear system, the low-rank bases in our method are computed 

in a systematic fashion, regardless of the underlying PDE or physical problem. 

There are two differences between our method and other hierarchical solvers. First, while most of hierarchical solvers are 

developed under either the H- [27,28] or the hierarchically semiseparable (HSS) [29,30] matrix frameworks, our method is 

built upon the H 

2 -matrix theory [31,32] , which provides a more efficient hierarchical low-rank structure. Under some mild 

conditions, the computational cost and the memory footprint of our method scale linearly with respect to the problem size, 

and we observed quasilinear complexity in practice for solving various types of problems. Second, unlike other hierarchical 

solvers, which are typically combined with the multifrontal algorithm, our method relies on domain partitioning, which 

naturally leads to a data decomposition scheme in the parallel algorithm. Put another way, these two differences allow our 

parallel algorithm to have the following three features: 

1. Only local communication is required for every processor. 

2. The computation-to-communication ratio is approximately the volume-to-surface-area ratio of the subdomain owned by 

a processor. 

3. The bulk of computation is from using sequential dense linear algebra, which has the potential to be significantly accel- 

erated on modern many-core architectures. 

To summarize, this paper presents a parallel hierarchical solver for general sparse linear systems, and especially, our 

work makes the following three major contributions: 

1. New derivation of the LoRaSp algorithm, which reveals the structure of calculation and data dependency in the original 

algorithm; 

2. Development of a bulk-synchronous parallel algorithm and a task-based asynchronous parallel algorithm with the opti- 

mal scheduling strategy; 

3. Development of a coloring scheme to extract maximum concurrency in the execution, and discussion on optimizing 

load-balancing in the presence of coloring constraints. 

The remainder of this paper is organized as follows. Section 2 presents the sequential algorithm, a new derivation of 

LoRaSp. Section 3 presents the parallel algorithm, focusing on techniques to keep communication local and to maximize 

concurrency. Section 4 analyzes the computation and communication cost of the parallel algorithm. Section 5 presents nu- 

merical results to demonstrate the versatility and parallel scalability of our parallel hierarchical solver. 

2. Sequential algorithm 

This section presents our new derivation of the LoRaSp algorithm. Although the algorithm works for a general sparse 

linear system Ax = b, we focus on symmetric positive definite (SPD) systems for ease of presentation. From a high-level 

perspective, the algorithm computes an approximate factorization of an SPD matrix A with the following steps. 

First, a partitioning of the rows/columns of A is computed algebraically. Suppose � is the set of row/column in- 

dices (DOFs). A clustering � = ∪ i πi , where π i is a cluster of DOFs, can be computed with a graph partitioner, such as 

METIS/ParMETIS [33] , Scotch [34] and Zoltan [35] . Second, some portions of DOFs in every cluster are eliminated as all clus- 

ters in � = ∪ i πi are looped over. Specifically, the fill-in blocks associated with a cluster π s are compressed, and π s is split 
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