
ARTICLE IN PRESS

JID: PARCO [m3Gsc; December 23, 2017;8:4]

Parallel Computing 0 0 0 (2017) 1–16

Contents lists available at ScienceDirect

Parallel Computing

journal homepage: www.elsevier.com/locate/parco

A distributed-memory hierarchical solver for general sparse

linear systems

Chao Chen

a , ∗, Hadi Pouransari b , Sivasankaran Rajamanickam

c , Erik G. Boman

c ,
Eric Darve

a , b

a Institute for Computational and Mathematical Engineering, Stanford University, Stanford, USA
b Department of Mechanical Engineering, Stanford University, Stanford, USA
c Center for Computing Research, Sandia National Laboratories, Albuquerque, USA

a r t i c l e i n f o

Article history:

Received 22 December 2016

Revised 7 November 2017

Accepted 19 December 2017

Available online xxx

Keywords:

Parallel linear solver

Sparse matrix

Hierarchical matrix

a b s t r a c t

We present a parallel hierarchical solver for general sparse linear systems on distributed-

memory machines. For large-scale problems, this fully algebraic algorithm is faster and

more memory-efficient than sparse direct solvers because it exploits the low-rank struc-

ture of fill-in blocks. Depending on the accuracy of low-rank approximations, the hierar-

chical solver can be used either as a direct solver or as a preconditioner. The parallel algo-

rithm is based on data decomposition and requires only local communication for updating

boundary data on every processor. Moreover, the computation-to-communication ratio of

the parallel algorithm is approximately the volume-to-surface-area ratio of the subdomain

owned by every processor. We present various numerical results to demonstrate the ver-

satility and scalability of the parallel algorithm.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Solving large sparse linear systems is an important building block – but often a computational bottleneck – in many en-

gineering applications. Large sparse linear systems arise, for example, from local discretization of elliptic partial differential

equations. Solving a general linear system that has N non-zeros with O (N) computer memory and CPU time is challenging,

especially when the underlying physical problem is three-dimensional. Existing methods fall into three categories as follows.

The first category of methods are sparse direct solvers [1] based on Gaussian elimination. These methods organize com-

putation efficiently and leverage fill-reducing ordering schemes. For example, the nested dissection multifrontal algorithm

[2,3] performs elimination according to a specific hierarchical structure of the unknowns. Because of their robustness and

efficiency, several state-of-the-art sparse direct solvers have been implemented into software packages, which target sequen-

tial [4–6] , shared-memory [7,8] and distributed-memory computers [9,10] . However, sparse direct solvers generally require

O (N

2) work and O (N

4
3) computer memory for a three-dimensional problem of size N . This quadratic factorization cost and

large memory footprint seriously limit the application of sparse direct solvers to truly large-scale problems.

The second category consists of iterative solvers. These solvers require only O (N) computer memory to store the linear

system and are thus more memory-efficient than sparse direct solvers. They can also achieve the optimal time-complexity if

∗ Corresponding author.

E-mail addresses: cchen10@stanford.edu (C. Chen), hadip@stanford.edu (H. Pouransari), srajama@sandia.gov (S. Rajamanickam), egboman@sandia.gov

(E.G. Boman), darve@stanford.edu (E. Darve).

https://doi.org/10.1016/j.parco.2017.12.004

0167-8191/© 2017 Elsevier B.V. All rights reserved.

Please cite this article as: C. Chen et al., A distributed-memory hierarchical solver for general sparse linear systems, Parallel

Computing (2017), https://doi.org/10.1016/j.parco.2017.12.004

https://doi.org/10.1016/j.parco.2017.12.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/parco
mailto:cchen10@stanford.edu
mailto:hadip@stanford.edu
mailto:srajama@sandia.gov
mailto:egboman@sandia.gov
mailto:darve@stanford.edu
https://doi.org/10.1016/j.parco.2017.12.004
https://doi.org/10.1016/j.parco.2017.12.004

2 C. Chen et al. / Parallel Computing 0 0 0 (2017) 1–16

ARTICLE IN PRESS

JID: PARCO [m3Gsc; December 23, 2017;8:4]

the number of iterations is small. For example, the multigrid method [11] is typically the fastest solver for many discretized

elliptic PDEs. However, iterative solvers have three disadvantages. First, the convergence of iterative solvers is not guaranteed

for general linear systems. For example, the multigrid method may fail to converge for indefinite linear systems and linear

systems coming from coupled PDEs. Second, the number of iterations may grow rapidly as the condition number of a linear

system increases. Third, the setup phase of some iterative solvers relies on sparse matrix-sparse matrix multiplication, as in

the algebraic multigrid method, which is complex to scale [12,13] .

The third category of methods developed for solving sparse linear systems are hierarchical solvers [14–19] and their

parallel counterparts [20–23] . The general idea behind these hierarchical solvers is exploiting the low-rank structure of dense

matrix blocks that arise during the elimination process to reduce storage and computational cost. As a result of utilizing the

data sparsity, hierarchical solvers, compared with sparse direct solvers, typically have reduced memory footprint and smaller

computational complexity. However, some of the existing hierarchical solvers still cannot attain quasilinear complexity for

solving three-dimensional problems, and others may be either too complicated to be implemented efficiently or may be

restricted to only structured problems.

In this paper, we introduce a new parallel hierarchical solver for solving general sparse linear systems. Our parallel

algorithm is based on the sequential algorithm in [19] called LoRaSp, which computes an approximate factorization with

sparse block-triangular factors. In particular, our method eliminates the unknowns cluster by cluster and compresses fill-in

blocks in a hierarchical fashion. The singular values of these fill-in blocks are often found to decrease geometrically, and

general algebraic techniques, such as the SVD, can be used to compute corresponding low-rank approximations. Since the

dropping/truncation rule in our method is based on the decay of singular values, it is expected to be more efficient than

other level-based or threshold-based rules, which are typically used in the incomplete LU (ILU) factorization [24] . In our

method, the bases computed in low-rank approximations serve the same role as restriction and prolongation operators do

in the algebraic multigrid method (AMG) [25,26] . While the construction of restriction and prolongation operators in AMG

may require tuning and manual adjustments for a specific linear system, the low-rank bases in our method are computed

in a systematic fashion, regardless of the underlying PDE or physical problem.

There are two differences between our method and other hierarchical solvers. First, while most of hierarchical solvers are

developed under either the H- [27,28] or the hierarchically semiseparable (HSS) [29,30] matrix frameworks, our method is

built upon the H

2 -matrix theory [31,32] , which provides a more efficient hierarchical low-rank structure. Under some mild

conditions, the computational cost and the memory footprint of our method scale linearly with respect to the problem size,

and we observed quasilinear complexity in practice for solving various types of problems. Second, unlike other hierarchical

solvers, which are typically combined with the multifrontal algorithm, our method relies on domain partitioning, which

naturally leads to a data decomposition scheme in the parallel algorithm. Put another way, these two differences allow our

parallel algorithm to have the following three features:

1. Only local communication is required for every processor.

2. The computation-to-communication ratio is approximately the volume-to-surface-area ratio of the subdomain owned by

a processor.

3. The bulk of computation is from using sequential dense linear algebra, which has the potential to be significantly accel-

erated on modern many-core architectures.

To summarize, this paper presents a parallel hierarchical solver for general sparse linear systems, and especially, our

work makes the following three major contributions:

1. New derivation of the LoRaSp algorithm, which reveals the structure of calculation and data dependency in the original

algorithm;

2. Development of a bulk-synchronous parallel algorithm and a task-based asynchronous parallel algorithm with the opti-

mal scheduling strategy;

3. Development of a coloring scheme to extract maximum concurrency in the execution, and discussion on optimizing

load-balancing in the presence of coloring constraints.

The remainder of this paper is organized as follows. Section 2 presents the sequential algorithm, a new derivation of

LoRaSp. Section 3 presents the parallel algorithm, focusing on techniques to keep communication local and to maximize

concurrency. Section 4 analyzes the computation and communication cost of the parallel algorithm. Section 5 presents nu-

merical results to demonstrate the versatility and parallel scalability of our parallel hierarchical solver.

2. Sequential algorithm

This section presents our new derivation of the LoRaSp algorithm. Although the algorithm works for a general sparse

linear system Ax = b, we focus on symmetric positive definite (SPD) systems for ease of presentation. From a high-level

perspective, the algorithm computes an approximate factorization of an SPD matrix A with the following steps.

First, a partitioning of the rows/columns of A is computed algebraically. Suppose � is the set of row/column in-

dices (DOFs). A clustering � = ∪ i πi , where π i is a cluster of DOFs, can be computed with a graph partitioner, such as

METIS/ParMETIS [33] , Scotch [34] and Zoltan [35] . Second, some portions of DOFs in every cluster are eliminated as all clus-

ters in � = ∪ i πi are looped over. Specifically, the fill-in blocks associated with a cluster π s are compressed, and π s is split

Please cite this article as: C. Chen et al., A distributed-memory hierarchical solver for general sparse linear systems, Parallel

Computing (2017), https://doi.org/10.1016/j.parco.2017.12.004

https://doi.org/10.1016/j.parco.2017.12.004

Download English Version:

https://daneshyari.com/en/article/6935047

Download Persian Version:

https://daneshyari.com/article/6935047

Daneshyari.com

https://daneshyari.com/en/article/6935047
https://daneshyari.com/article/6935047
https://daneshyari.com

