
Parallel heuristics for scalable community detection

Hao Lu a, Mahantesh Halappanavar b, Ananth Kalyanaraman a,⇑
a School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA 99164, United States
b Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, United States

a r t i c l e i n f o

Article history:
Available online 14 March 2015

Keywords:
Community detection
Parallel graph heuristics
Graph coloring
Graph clustering

a b s t r a c t

Community detection has become a fundamental operation in numerous graph-theoretic
applications. It is used to reveal natural divisions that exist within real world networks
without imposing prior size or cardinality constraints on the set of communities. Despite
its potential for application, there is only limited support for community detection on
large-scale parallel computers, largely owing to the irregular and inherently sequential
nature of the underlying heuristics. In this paper, we present parallelization heuristics
for fast community detection using the Louvain method as the serial template. The
Louvain method is a multi-phase, iterative heuristic for modularity optimization.
Originally developed by Blondel et al. (2008), the method has become increasingly popular
owing to its ability to detect high modularity community partitions in a fast and memory-
efficient manner. However, the method is also inherently sequential, thereby limiting its
scalability. Here, we observe certain key properties of this method that present challenges
for its parallelization, and consequently propose heuristics that are designed to break the
sequential barrier. For evaluation purposes, we implemented our heuristics using
OpenMP multithreading, and tested them over real world graphs derived from multiple
application domains (e.g., internet, citation, biological). Compared to the serial Louvain
implementation, our parallel implementation is able to produce community outputs with
a higher modularity for most of the inputs tested, in comparable number or fewer itera-
tions, while providing absolute speedups of up to 16� using 32 threads.
� 2015 The Authors and Battelle Memorial Institute. Published by Elsevier B.V. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/

by-nc-nd/4.0/).

1. Introduction

Community detection, or graph clustering, is becoming pervasive in the data analytics of various fields including (but not
limited to) scientific computing, life sciences, social network analysis, and internet applications [1]. As data grows at explo-
sive rates, the need for scalable tools to support fast implementations of complex network analytical functions such as com-
munity detection is critical. Given a graph, the problem of community detection is to compute a partitioning of vertices into
communities that are closely related within and weakly across communities. Modularity is a metric that can be used to mea-
sure the quality of communities detected [2]. Modularity maximization is an NP-Complete problem [3] and therefore fast
approximation heuristics are used in practice. One such heuristic is the Louvain method [4].

Our basis for selecting the Louvain heuristic for parallelization hinges on its increasing popularity within the user com-
munity and owing to its strengths in algorithmic and qualitative robustness. With well over 1700 citations to the original
paper (as of this writing), the user base for this method has been rapidly expanding in the last few years. As network sizes

http://dx.doi.org/10.1016/j.parco.2015.03.003
0167-8191/� 2015 The Authors and Battelle Memorial Institute. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author.
E-mail addresses: luhowardmark@wsu.edu (H. Lu), hala@pnnl.gov (M. Halappanavar), ananth@eecs.wsu.edu (A. Kalyanaraman).

Parallel Computing 47 (2015) 19–37

Contents lists available at ScienceDirect

Parallel Computing

journal homepage: www.elsevier .com/ locate/parco

http://crossmark.crossref.org/dialog/?doi=10.1016/j.parco.2015.03.003&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.parco.2015.03.003
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:luhowardmark@wsu.edu
mailto:hala@pnnl.gov
mailto:ananth@eecs.wsu.edu
http://dx.doi.org/10.1016/j.parco.2015.03.003
http://www.sciencedirect.com/science/journal/01678191
http://www.elsevier.com/locate/parco


continue to grow rapidly into scales of tens or even hundreds of billions of edges [5], the memory and runtime limits of the
serial implementation are likely to be tested. However, parallelization of this inherently serial algorithm can be challenging
(as discussed in Section 4).

The parallel solutions presented in this paper (Section 5) provide a way to overcome key scalability challenges. In devising
our algorithm, we factored in the need to parallelize without compromising the quality of the original serial heuristic and yet
be capable of achieving substantial speedup. Where possible, we also factored in the need for guaranteeing stability in out-
put across different platforms and programming models. The resulting algorithm, presented in Section 5.4, is a combination
of heuristics that can be implemented on both shared and distributed memory machines. As demonstrated in our experi-
mental section (Section 6), our multi-threaded implementations output results that have either a higher or comparable
modularity to that of the serial method, and is able to reduce the time to solution by factors of up to 16�. These observations
are supported over a number of real-world networks.

Contributions: The main contributions of this paper are:

(i) Introduction of novel and effective heuristics for parallelization of the Louvain algorithm on multithreaded
architectures;

(ii) Experimental studies using 11 real-world networks obtained from varied sources including the DIMACS10 challenge
website, University of Florida sparse matrix collection and biological databases; and

(iii) A thorough comparative study of the performance and related trade-offs among the different parallel heuristics along
with the serial Louvain method.

2. Problem statement and notation

Let GðV ; E;xÞ be an undirected weighted graph, where V is the set of vertices, E is the set of edges and xð:Þ is a weighting
function that maps every edge in E to a non-zero, positive weight.1 In the input graph, edges that connect a vertex to itself are
allowed — i.e., ði; iÞ can be a valid edge. However, multi-edges are not allowed. Let the adjacency list of i be denoted by
CðiÞ ¼ fjjði; jÞ 2 Eg. Let ki denote the weighted degree of vertex i — i.e., ki ¼

P
j2CðiÞ xði; jÞ. We will use n to denote the number

of vertices in G; M to denote the number of edges in the graph; and m to denote the sum of all edge weights — i.e., m ¼ 1
2

P
i2V ki.

A community within graph G represents a (possibly empty2) subset of V. In practice, for community detection, we are inter-
ested in partitioning the vertex set V into an arbitrary number of disjoint non-empty communities, each with an arbitrary size
(> 0 and 6 n). We call a community with just one element as a singlet community. We will use CðiÞ to denote the community
that contains vertex i in a given partitioning of V. We use the term intra-community edge to refer to an edge that connects two
vertices of the same community. All other edges are referred to as inter-community edges. Let Ei!C refer to the set of all edges
connecting vertex i to vertices in community C. And let ei!C denote the sum of the edge weights for the edges in Ei!C .

ei!C ¼
X

ði;jÞ2Ei!C

xði; jÞ ð1Þ

Let aC denote the sum of the degrees of all the vertices in community C (also referred to as community degree).

ac ¼
X
i2C

ki ð2Þ

Modularity: Let P ¼ fC1;C2; . . . Ckg denote the set of all communities in a given partitioning of the vertex set V in
GðV ; E;xÞ, where 1 6 k 6 n. Consequently, the modularity (denoted by Q) of the partitioning P is given by the following
expression [2]:

Q ¼ 1
2m

X
i2V

ei!CðiÞ �
X
C2P

aC

2m
� aC

2m

� �
ð3Þ

Modularity is not an ideal metric for community detection and issues such as resolution limit have been identified [1,6]; a
few variants of modularity definitions have also been devised [6–8]. However, the definition provided in Eq. (3) continues to
be the more widely adopted version in practice, including in the Louvain method [4], and therefore, we will use that def-
inition for this paper.

Community detection: Given GðV ; E;xÞ, the problem of community detection is to compute a partitioning P of communi-
ties that maximizes modularity.

This problem has been shown to be NP-Complete [3]. Note that this problem is different from graph partitioning problem
and its variants [9], where the number of clusters and the rough size distribution of those target clusters are known a priori.
In the case of community detection, both quantities are unknown prior to computation. In fact they encapsulate the input
properties that one seeks to discover out of the community detection exercise.

1 If the graph is unweighted, then we treat every edge to be of weight 1.
2 The notion of empty communities does not have practical relevance. We have intentionally defined it this way so as to make our later algorithmic

descriptions easier. It is guaranteed, however, that all output communities at the end of our algorithm will be non-empty subsets.

20 H. Lu et al. / Parallel Computing 47 (2015) 19–37



Download English Version:

https://daneshyari.com/en/article/6935229

Download Persian Version:

https://daneshyari.com/article/6935229

Daneshyari.com

https://daneshyari.com/en/article/6935229
https://daneshyari.com/article/6935229
https://daneshyari.com

