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a b s t r a c t

We present a parallelized bijective graph matching algorithm that leverages seeds and is
designed to match very large graphs. Our algorithm combines spectral graph embedding
with existing state-of-the-art seeded graph matching procedures. We justify our approach
by proving that modestly correlated, large stochastic block model random graphs are cor-
rectly matched utilizing very few seeds through our divide-and-conquer procedure. We
also demonstrate the effectiveness of our approach in matching very large graphs in simu-
lated and real data examples, showing up to a factor of 8 improvement in runtime with
minimal sacrifice in accuracy.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Graph matching is an increasingly important problem in inferential graph statistics, with applications across a broad
spectrum of fields including computer vision [38,10], shape matching and object recognition [4,7], and biology and neu-
roscience [22,34,36], to name a few. The graph matching problem (GMP) seeks to find an alignment between the vertex sets
of two graphs that best preserves common structure across graphs. Unfortunately, the GMP is inherently combinatorial, and
no efficient exact graph matching algorithms are known. Indeed, even the simpler problem of determining if two graphs are
isomorphic is famously of unknown complexity [19,30], and if the graphs are allowed to be loopy, weighted and directed,
then the simplest version of GMP is equivalent to the NP-hard quadratic assignment problem. Due to its wide applicability,
there exist a vast number of approximating algorithms for GMP; see the paper ‘‘30 Years of Graph Matching in Pattern
Recognition’’ [11] for an excellent survey of the existing literature.

When matching across graphs, often we have access to a partial matching of the vertices in the form of a seeding. In prac-
tice, the assumption of seeds is quite natural in many applications. For example, in aligning social networks actors’ user
names may often allow for a partial alignment to be known a priori. When matching across brain graphs (connectomes),
we have geometric information provided by the brain atlas which provides a soft seeding of the vertices. In many time series
graphs, it is common to have a group of invariant vertices across time which act as seeds.

In the seeded graph matching problem (SGMP), we leverage the information contained in an available partial matching to
match the remaining vertices across graphs. Though the literature on seeded graph matching is comparatively small,
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recent results point to significant performance improvements in GM algorithms by incorporating even a modest number of
seeds [16,27].

Though a myriad of approximate graph matching algorithms exist, the very large graphs arising in the burgeoning realm
of ‘‘big data’’ demand highly scalable algorithms. Roughly speaking, existing state of the art algorithms for approximate
graph matching can be divided into two classes: those that seek to bijectively match vertices of graphs of the same order,
and those that seek matchings between the vertex sets that are allowed to be many-to-many and many-to-one. The current
cutting-edge bijective graph matching algorithms achieve excellent performance in approximately matching graphs with
thousands of vertices and with computational complexity Oðn3Þ–n the number of vertices being matched; see for example
[34,37,15]. These algorithms often operate directly on the adjacency matrices of the graphs to be matched, utilizing the tools
of nonlinear optimization to approximately solve GMP directly. However, owing to their Oðn3Þ complexity, these algorithms
are practically unusable, without significant computation resources, for matching very large graphs (n � 105Þ.

Scalability is often achieved via relaxing the bijection requirement and allowing many-to-many and many-to-one match-
ings. These graph matching procedures can efficiently match very large graphs, often with n in the tens of thousands; see for
example [26,1]. A common approach to these scalable inexact algorithms is that they first match smaller, lower dimensional
representative objects (prototype graphs in [1], eigenvectors in [26]) and use these to build the overall matching.

Herein, we propose a new divide-and-conquer approach to scalable bijective seeded graph matching. Our algorithm, the
Large Seeded Graph Matching algorithm (LSGM, see Algorithm 1), merges the approaches of bijective and non-bijective
graph matching and leverages the information in seeded vertices in order to match very large graphs. The algorithm pro-
ceeds in two steps: We first spectrally embed the graphs—yielding a low dimensional Euclidean representation of our
graph—and then use the information provided by seeded vertices to jointly cluster the vertices of the two embedded graphs.
This embedding procedure allows us to employ the powerful theory of adjacency spectral embedding (see for example
[31,17]) to prove asymptotically perfect performance in jointly clustering stochastic block model random graphs, see
Theorem 4.1 for detail.

Once the vertices are jointly clustered, we then match the graphs within the clusters. This matching step is fully
parallelizable and flexible in that we can employ any one of a number of matching procedures depending on the properties
of the resulting clusters. The flexibility afforded by our procedure in the clustering and matching subroutines can have a dra-
matic impact on algorithmic scalability. For example, on a 1600 vertex simulated graph our parallelization procedure was
able to achieve an factor of 8 improvement in speed at minimal accuracy degradation by increasing the number of clusters
and hence the number of cores that were used; see Section 5.2.

Though we are not the first to employ a divide-and-conquer approach to graph matching (see for example [9,38,1]), our
focus on the efficient utilization of apriori observed seeded vertices and the theoretical framework for our approach provided
by Theorem 4.1 set our algorithm apart from the existing literature.

Note: All graphs considered herein will be simple; in particular there are no multiple edges between two vertices nor are
there edges with a single vertex as both endpoints. Modifications for the directed case are quite simple [31,17] but we do not

consider them in this manuscript. All vectors considered will be column vectors, and ~1m is the length-m vector of all 10s.

When appropriate we drop the subscript and just write ~1. Throughout the paper we employ the standard notation
½n� :¼ f1;2; . . . ;ng for any n 2 N, and to simplify future notation, if A 2 Rn�n and s;r � ½n�, then Aðs;rÞ will denote the sub-
matrix of A with row indices s and column indices r. For a matrix X;Xð:; iÞ will denote the ith column of X and Xði; :Þ the ith
row of X. Also for two matrices X and Y ; ½XjY � will denote the column concatenation of X and Y.

Algorithm 1. Divide-and-conquer seeded graph matching; the LSGM algorithm

INPUT: Symmetric, hollow A;B 2 f0;1gn�n; s 2 ½n�, seeding / : ½s� ! ½s�
OUTPUT: A matching of G1 and G2 given by w;
Step 1: Embed and jointly cluster the graphs according to Algorithm 2
Step 2: In parallel
for i ¼ 1 to k do

Match cluster i across the graphs using, yielding matching wðiÞ;
end for

OUTPUT: w ¼ �k
i¼1wðiÞ.

2. Background

There are numerous formulations of the graph matching problem, though they all share the same objective heuristic:
given two graphs, G1 ¼ ðV1; E1Þ and G2 ¼ ðV2; E2Þ, GMP seeks an alignment between the vertex sets V1 and V2 that best pre-
serves structure across the graphs. In bijective graph matching, we further assume jV1j ¼ jV2j ¼ n, and the alignment sought
by GMP is a bijection between V1 and V2. In non-bijective graph matching, we allow for jV1j– jV2j and for alignments that are
not one-to-one.
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