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a b s t r a c t

Demand-Response (DR) programs, whereby users of an electricity network are encouraged by economic
incentives to re-arrange their consumption in order to reduce production costs, are envisioned to be a key
feature of the smart grid paradigm. Several recent works proposed DR mechanisms and used analytical
models to derive optimal incentives. Most of these works, however, rely on a macroscopic description of
the population that does not model individual choices of users.

In this paper, we conduct a detailed analysis of those models and we argue that the macroscopic
descriptions hide important assumptions that can jeopardize the mechanisms’ implementation (such
as the ability to make personalized offers and to perfectly estimate the demand that is moved from a
timeslot to another). Then, we start from a microscopic description that explicitly models each user’s
decision. We introduce four DR mechanisms with various assumptions on the provider’s capabilities.
Contrarily to previous studies, we find that the optimization problems that result from our mechanisms
are complex and can be solved numerically only through a heuristic. We present numerical simulations
that compare the different mechanisms and their sensitivity to forecast errors. At a high level, our
results show that the performance of DR mechanisms under reasonable assumptions on the provider’s
capabilities are significantly lower than those suggested by previous studies, but that the gap reduces
when the population’s flexibility increases.

© 2018 Published by Elsevier Ltd.

1. Introduction

Demand Response (DR hereinafter) programs are envisioned to
be a key feature of the Smart Grid paradigm [1]. By means of eco-
nomic incentives (discounts or penalties), DR schemes encourage
users to rearrange their consumption in response to the network
state, thus mitigating the grid overload and driving wholesale
prices down.

Several analytical models are available in the literature, which
describe and quantify the effects of DR mechanisms. Whatever
their specifics are, these schemes need to model how users react
to the incentives. Ideally the models should capture the most
realistic features of a practical DR mechanism while maintaining
tractability.
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Among these contributions, the authors of [2] study how an
energy provider should select time-dependent discounts to mini-
mize its production costs. They assume that the percentage of users
who shift their consumption from slot i to slot j is a decreasing
function of the temporal distance between slots i and j and a
concave and increasing function of the discount offered in slot j (Rj),
independent from discounts in other slots. The paper claims that,
under these assumptions along with the requirement of piecewise
linearity of energy production costs, the problem of finding the
set of discounts that minimize the provider’s cost is convex and
therefore simple to solve. Under similar modeling assumptions,
however, we find that the optimization problem can be non-
convex even in such a simple scenario (see Section 4). The same
user’s model as in [2] is adopted also in [3], where the optimization
problem is extended in order to account for battery storages and
distributed renewable sources available into a specific microgrid.
Authors of [4] propose a day ahead pricing scheme which max-
imizes the provider’s profitability and capacity utilization. Users
are assumed to reschedule their consumption by comparing the
utility vi they get by scheduling a task in each timeslot i; therefore
they allocate their consumption proportionally to these utilities,
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i.e., they consume a fraction vi∑T
j=1vj

of their total energy demand

in timeslot i. The resulting optimization problem is non convex
but some relaxation techniques are introduced, which allow one
to calculate a solution within a reasonable amount of time. In [5],
a more realistic model is proposed where each user first calculates
the welfare (defined as utility minus time-dependent cost) she
gets from consuming electricity in each of the possible timeslots,
and then allocates all the consumption to the slot returning the
largest welfare. As we show below (see Section 4.4) this model
can lead to a much more complex optimization problem than the
one presented in [5]. Finally, the authors of [6] propose a full-
fledged game theoretical model, but their results hold only if users
experience a large number of interactions without any change in
the system.

We claim that these studies rely on too strong assumptions,
which jeopardize their usability for practical purposes. Interest-
ingly, we observe that the assumptions are sometimes hidden
in the macroscopic models the papers start from. In particular
in this paper we focus on [2] and show that its model requires
personalized offers and a very precise forecast of the baseline con-
sumption of each user. The implementation of these features may
require potentially significant costs in terms of communication,
measurement and computation infrastructure. Besides highlight-
ing these implicit requirements in the analytical framework in [2]
(and then also in [3]), we explore their potentials considering four
DR mechanisms with different levels of complexity:

1. the base mechanism corresponds to an optimization prob-
lem similar to the one considered in [2], it requires personal-
ized offers and individual consumption forecasts; the energy
production cost is optimized over the discount values, each
of which is offered to a given fraction of the population,

2. the optimized mechanism takes full advantage of personal-
ized offers and consumption forecasts by minimizing the
cost over both the discount values and the population frac-
tions to which the discounts are offered,

3. the robust mechanism relies on personalized offers, but does
not need individual consumption forecasts,

4. finally the broadcast mechanism (analogous to that in [5])
needs neither of the two features.

Interestingly, contrarily to prior studies, we find that the cost-
minimization problems resulting from our DR mechanisms are
not convex (even for the base mechanism). Nevertheless, simple
heuristics can identify (potential) minima in a reasonable amount
of time in realistic scenarios. Then, our numerical results show that
the simpler robust andbroadcastmechanisms achieve significantly
lower cost reductions than the optimizedmechanism,which is dif-
ficult to implement, but that the gap reduceswhen thepopulation’s
flexibility increases.

The paper is organized as follows. In Section 2 we discuss how
the macroscopic models considered in [2–4] hide some implicit
assumptions about the user rationality or about the interactions
between the provider and the user. We define our microscopic
model in Section 3 and then describe different DR mechanisms
and their corresponding optimization problems in Section 4. We
evaluate their performance numerically in a realistic scenario in
Section 5. Finally in Section 6 we discuss how our models can be
tuned and which other psychological and social insights should be
taken into account to explain users’ decisions.

2. Pitfalls when starting frommacroscopic models

In this section,wedescribe inmore detail themacroscopicmod-
els proposed in the literature for day-ahead price optimization.

Consider a finite time horizon discretized in a set T of N timeslots
and a large population S of users. The baseline aggregate energy
consumption in slot j is denoted by E0

j .
The energy provider charges a flat rate B, but it can offer

discount rates to incentivize the users to move some of their
consumption so as to reduce the energy production cost. Due to
consumption shifts, the actual aggregate consumption in time slot
j is E1

j . Observe that a usual assumption in the literature (including
the papers mentioned above) is that the introduction of a DR
scheme neither reduces nor increases users’ demand; it merely
rearranges users’ consumption in amore cost effectiveway, so that

N∑
j=1

E0
j =

N∑
j=1

E1
j . (1)

We denote the amount of consumption shifted from slot j to slot
i ̸= j as Ej→i, and the amount of consumption the users refuse to
shift away from j as Ej→j. Then we have

E1
i = E0

i +

N∑
z=1

Ez→i −

N∑
k=1

Ei→k.

We now start to further detail the model considering some
specific assumptions made in previous works. In [2] and [3], the
electricity provider offers an energy price discount Ri ≥ 0 in each
slot i. The users are assumed to react to these incentives by shifting
a fraction of their baseline consumption from slot j to slot i (|j − i|
slots away) according to the following formula:

Ej→i = E0
j Sj(Ri, |j − i|). (2)

Sj(Ri, |j − i|) is called the aggregate sensitivity function and is
increasing in the discount Ri and decreasing in the temporal shift
|j − i|, in order to take into account the user discomfort.

The provider selects the vector of discounts R in order to min-
imize its total cost, equal to the sum of the electricity generation
costs and the loss of revenues due to the discounts. In particular
the optimization problem considered in [2] is the following:

min
R

∑
i

∑
j̸=i

RiEj→i +
∑

i

ci
(
E1
i

)
(3)

s.t. 0 ≤ Ri ≤ B ∀i = 1, . . . ,N, (4)

where ci(·) is the cost of electricity production in slot i. Eq. (4)
guarantees that discounts R are non negative and smaller than the
flat rate B, so that the money stream goes toward the provider.

As it often happens, the devil is hidden in the details, and in
this case in Eqs. (2) and (3). Our first remark is that the cost
of lost revenues

∑
i
∑

j̸=iRiEj→i in Eq. (3) implicitly assumes the
possibility to reward only the consumption actually shifted from
j to i, i.e., Ej→i, but this quantity cannot be directly measured. The
actual consumption E1

i can be measured, and then Ej→i can be
quantified provided that we have good estimates of the sensitivity
function Sj(Ri, |j − i|) and of the baseline consumption E0

i . Let us
assume for amoment that Sj(Ri, |j−i|) is known fromhistorical data
and that the aggregate baseline consumption may be predicted
with a reasonably high level of accuracy on a large set of users.
Then it seems possible to solve themacroscopic problem in Eqs. (3)
and (4), but we need to consider also what should happen at the
microscopic scale. While the estimates for the aggregate baseline
consumption can be adequately precise, finally the billing is done
at the user’s granularity and each user expects to receive the price
discount corresponding to the energy consumption she actually
moved. If the energy bill’s reduction does not correspond to her
forecast, the user is likely to opt out of the program (in particular if
she has experienced underpayments) or to reduce her efforts and
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