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A B S T R A C T

Most previous work in addressing the adaptive routing problem in stochastic and time-dependent
(STD) network has been focusing on developing parametric models to reflect the network dy-
namics and designing efficient algorithms to solve these models. However, strong assumptions
need to be made in the models and some algorithms also suffer from the curse of dimensionality.
In this paper, we examine the application of Reinforcement Learning as a non-parametric model-
free method to solve the problem. Both the online Q learning method for discrete state space and
the offline fitted Q iteration algorithm for continuous state space are discussed. With a small case
study on a mid-sized network, we demonstrate the significant advantages of using Reinforcement
Learning to solve for the optimal routing policy over traditional stochastic dynamic programming
method. And the fitted Q iteration algorithm combined with tree-based function approximation is
shown to outperform other methods especially during peak demand periods.

1. Introduction

In-vehicle route guidance system has become a more and more popular tool in people’s daily lives, it can provide drivers with
guidance on optimal routes from their current locations to predetermined destinations. Nowadays, many navigation devices can also
receive real-time traffic information, which can be incorporated by the system to come up with smarter routing strategies. However,
most of the current strategies are in a reactive fashion: when the link travel times are updated base on real-time traffic information,
the system will recalculate the shortest path in the current network, and will recommend the new path to the user if it is faster. Since
it does not take into account the possible realizations of link travel times in the future, this strategy is only suboptimal.

Different from a deterministic and static network where link travel times are fixed and do not change with time, the real traffic
networks are usually stochastic and time-dependent due to the nature of periodicity and volatility of traffic demand. And it has been
shown by Hall (1986) that the standard shortest path algorithms such as Dijkstra’s algorithm and A∗ search fail to find the minimum
expected travel time path in such networks. It was shown that the optimal “route choice” is not a simple path but an adaptive decision
rule: an optimal successor node is chosen based on the arrival time of the current node, and further choices are made only when later
nodes are reached. A method based on dynamic programming was proposed to find the optimal time-adaptive decision rule. It should
be noted that Hall’s adaptive routing model is a parametric model since the travel time probability distributions for all the links in the
network are assumed to be known and utilized in the algorithm. Following Hall’s work, a large number of studies have been con-
ducted to address the adaptive routing problem in different settings, most of which are based on parametric models and are
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summarized as follows.

1.1. Prior work: parametric models

Fu and Rilett (1998) extended the shortest path problem in dynamic and stochastic networks to the case where link travel times
are defined as continuous-time stochastic processes. A probability-based formula for calculating the mean and variance of the travel
time for a given path was developed and a heuristic algorithm based on the k-shortest path algorithm was proposed. Their model
required the information on the mean and standard deviation of the link travel time as a function of the time of the day. Similarly,
Miller-Hooks and Mahmassani (2000) presented two modified label-correcting algorithms for the problem of generating least ex-
pected time (LET) paths in stochastic and time-dependent networks. Travel times on the network were represented as random
variables with probability distribution functions that vary with time. Fu (2001) also examined the adaptive routing problem in
networks where link travel times were modeled as random variables with known mean and standard deviation, but the time-de-
pendency of link travel times was handled with an algorithmic scheme. Based on the closed-loop routing policy in Fu (2001), Du et al.
(2013) integrated traveller preferences in terms of travel time and travel time variability into the decision process. And they adopted
a discrete distribution updated in real time to describe the dynamic characteristics of the link travel time.

While all the above works assumed that link travel costs are independent from each other, many other works have considered
link-wise correlations in the stochastic networks. Waller and Ziliaskopoulos (2002) addressed the stochastic shortest path problem
with recourse when limited forms of spatial and temporal arc cost dependencies were accounted for. One-step spatial dependence was
assumed in such a way that if information from the predecessor arc was given, no further spatial information had an impact on the
expected current arc cost. And this relationship was reflected in the conditional probability matrices. Also, Gao and Chabini (2006)
studied routing policy problems in a general stochastic time-dependent network with both time-wise and link-wise dependency and
perfect online information. A joint distribution of link travel times was used to represent the stochastic network, although it was
difficult to be estimated in practice. Later, Gao and Huang (2012) expanded upon past research by examining the optimal routing
problem with partial or no online information. A heuristic instead of an exact algorithm was designed and employed based on a set of
necessary conditions for optimality. However, discrete distributions of link travel times were assumed for the convenience of defining
routing policies. And the resulting algorithm was strongly polynomial in the number of support points, which might be exponential to
the number of links in real networks.

A number of other researchers also attempted to model the stochastic temporal dependence of link costs using Markov chain.
Psaraftis and Tsitsiklis (1993) examined the shortest path problem in acyclic networks in which arc costs are known functions of
certain environment variables, and each of these variables evolves according to an independent Markov process. Azaron and Kianfar
(2003) applied the stochastic dynamic programming to find the dynamic shortest path in stochastic dynamic networks, in which the
arc lengths were independent random variables with exponential distributions. The parameter of the exponential distribution was
assumed to be a function of the state of certain environmental variable, which would evolve in accordance with a continuous time
Markov process. Later, Kim et al. (2005a) developed a decision-making procedure for determining the optimal driver attendance
time, optimal departure times, and optimal routing policies under time-varying traffic flows based on a Markov decision process
formulation. They assumed that each observed link can be in one of two states (congested or uncongested) that determined the travel
time distribution used. However, when the number of observed links with real-time traffic information increases, the off-line cal-
culations can be computationally intractable. To address this issue, Kim et al. (2005b) proposed a procedure for state space reduction.
Taking into account the incident induced delays, Güner et al. (2012) proposed a stochastic dynamic programming formulation for
dynamic routing of vehicles in non-stationary stochastic networks subject to both recurrent and non-recurrent congestion.

1.2. Motivation: non-parametric model-free methods

As can be seen in the above review, most of the previous work in addressing the adaptive routing problem has been focusing on
developing parametric models to reflect the network stochasticity and designing efficient algorithms to solve these models. In their
models, some finite set of parameters were used to represent the network characteristics, such as link travel time distributions, link
correlations, or Markov processes. When applying them to real networks, we have to first estimate these parameters for the model
based on some training data, and then solve for the routing policies based on the developed algorithms. There are many clear benefits
of using parametric models: first, they are easy to understand and the results are more interpretable; second, the parameters can be
learned quickly from a small set of data; and most importantly, they are more generally applicable, meaning that once the model is
established for a certain network, we can solve for the best routing strategy from any origin to any destination quite efficiently.
However, there are also some unavoidable limitations of the parametric models:

• First, in most of the parametric adaptive routing models we have seen, strong assumptions have to be made to allow for efficient
solutions. However, these assumptions might not be consistent with the cases in real networks. For example, in Azaron and
Kianfar (2003), link costs were assumed to be independent random variables with known exponential distributions, which might
be difficult to validate in real networks since the distributions can vary a lot.

• Second, some of the proposed parametric models still suffer from the curse of dimensionality, i.e. they can be applied to small
networks but cannot be incorporated into larger networks. For instance, the algorithm in Gao and Huang (2012) is polynomial in
the number of support points of the discrete joint link travel costs distribution, which can be exponential to the number of links in
the network. Thus in many cases, some approximation have to be applied to these models to allow for tractable solutions, which
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