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A B S T R A C T

Track geometry inspection data is important for managing railway infrastructure integrity and
operational safety. In order to use track geometry inspection data, having accurate and reliable
position information is a prerequisite. Due to various issues identified in this research, the po-
sitions of different track geometry inspections need to be aligned and synchronized to the same
location before being used for track degradation modeling and maintenance planning. This is
referred to as “position synchronization”, a long-standing important research problem in the area
of track data analytics. With the aim of advancing the state of the art in research on this subject,
we propose a novel approach to more accurately and expediently synchronize track geometry
inspection positions via big-data fusion and incremental learning algorithms. Distinguishing it
from other relevant studies in the literature, our proposed approach can simultaneously address
data exceptions, channel offsets and local position offsets between any two inspections. To solve
the Position Synchronization Model (PS-Model), an Incremental Learning Algorithm (IL-
Algorithm) is developed to handle the “lack of memory” challenge for the fast computation of
massive data. A case study is developed based on a dataset with data size of 18 GB, including 58
inspections between February 2014 and July 2016 over 323 km (200 miles) of tracks belonging
to China High Speed Railways. The results show that our proposed model performs robustly
against data exceptions via the use of multi-channel information fusion. Also, the position syn-
chronization error using our proposed approach is within 0.15 meters (0.5 feet). Our proposed
data-driven, incremental learning algorithm can quickly solve the complex, data-extensive, po-
sition synchronization problem, using an average of 0.1 s for processing one additional kilometer
of track. In general, the data analysis methodology and algorithm presented in this paper are also
suitable to address other relevant position synchronization problems in transportation en-
gineering, especially when the dataset contains multiple channels of sensors and abnormal data
outliers.

1. Introduction

Track geometry defects are considered one of the most important factors in operational stability and safety (Esveld, 2001; Higgins
and Liu, 2017; Liu et al., 2013; Quiroga and Schnieder, 2012). Track geometry data from track inspection cars is useful for railway
maintenance. There are multiple inspection channels corresponding to different types of track geometry, and each channel relates to a
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specific type of sensor. Taking the GJ-4 track inspection car of the Chinese Ministry of Railways as an example, some track inspection
parameters are listed in Table 1 (Ren et al., 2010). The illustrative sketches of different types of track geometry are shown in Fig. 1.
Each channel corresponds to a specific type of track geometry.

There have been many studies based on track inspection data, including data measurement (Haigermoser et al., 2015; Weston
et al., 2007; Bocciolone et al., 2007; Tsunashima, 2008), track condition evaluation (Tsunashima, 2008; Alfelor et al., 2001; Sadeghi,
2010; Sadeghi and Askarinejad, 2011) and track degradation prediction (Kawaguchi et al., 2005; Bartram et al., 2008; Liu et al.,
2010; Xu et al., 2011, 2012; Xu, 2012; Selig et al., 2008). Nearly all the methods and models require high quality inspection data. The
use of raw track geometry inspection data from the track geometry car is not always valid due to various data issues, such as
measurement errors, abnormal data outliers and positional errors. Among these errors, milepost positional error is one common issue,
requiring extensive effort to match and align the positions of the same inspected location from multiple inspections (Xu, 2012; Selig
et al., 2008; Qu, 2012; Xu et al., 2013). This effort is not trivial because of the need for estimating and predicting location-specific
track geometry deterioration in railroad track maintenance planning. This paper aims to address position synchronization problem
from different inspection runs, with a high precision and computational efficiency. The research outcomes can be used for all types of
railway systems, particularly high-speed railways, whose track asset management demands a high accuracy in positional information.

In practice, an initial milepost can be manually selected. The subsequent mileage information is obtained according to the
rotation angles (by counting the grating encoder impulse number) and the wheel radius (Allotta et al., 2002), as illustrated in Fig. 2a.
However, there are inevitable positional errors caused by radial errors of the wheels, faulty encoder output (Qu, 2012), degraded
adhesive conditions (Soleimani and Moavenian, 2017, Liu and Bruni, 2015) or track geometry irregularities (Fig. 2d). Due to these
factors, the positional error accumulates. To address these issues, the Global Positioning System (GPS) (Specht et al., 2017;
Tsunashima, 2008; Allotta et al., 2002), Differential GPS (DGPS) (Allotta et al., 2002; Hanreich et al., 2002) and radio-frequency
identification (RFID) (Yang, 2009) are introduced as an absolute reference to control the accumulation of positional errors.

Even though many advanced techniques and devices are used, the positional errors cannot be eliminated and can sometimes reach
100 meters (328 feet). Furthermore, other environmental conditions could lead to abnormal data points. For example, a film of water
from rain on the rail-head can cause laser sensor malfunction (Fig. 2c). This kind of abnormal data outlier may influence the
performance of the position synchronization method. In Section 2, we review the related work in the literature that addresses this
research problem, the respective merit and limitations of each method and the intended contributions of our proposed new approach
to the body of knowledge.

2. Related prior work

Positional errors can be classified into three categories, which are (1) absolute position errors (APE); (2) relative position errors
(RPE); and (3) channel-inside position offset (CPO). Since our study focuses on position synchronization of data from different runs
with multiple measurement channels, our review focuses on RPE and CPO. It should be noted that position synchronization is only
focus on RPE and CPO. The track inspection dataset used in this paper has undergone a preliminary processing based on the Key
Equipment Identification (KEI) model proposed in Xu et al. (2013).

Table 1
Selected track inspection parameters and methods.

Channel Type Sketch Map Measurement Method Sensors

1 Gauge Fig. 1 (1) Laser ranging Laser and displacement transducer
2 Longitudinal profile (two sides) Fig. 1 (4) Inertial method Accelerometer and displacement transducer
3 Alignment (two sides) Fig. 1 (3)
4 Crosslevel Fig. 1 (2) Automatic acceleration compensation Accelerometer
5 Warp (twist) – Difference of crosslevel with a distance of 3 meters Calculated from crosslevel

Gauge Zero crosslevel
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top-line of rail
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Fig. 1. Schematic diagrams of track gauge, crosslevel, alignment and.
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