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A B S T R A C T

Aircraft mass is a crucial piece of information for studies on aircraft performance, trajectory
prediction, and many other topics of aircraft traffic management. However, It is a common
challenge for researchers, as well as air traffic control, to access this proprietary information.
Previously, several studies have proposed methods to estimate aircraft weight based on specific
parts of the flight. Due to inaccurate input data or biased assumptions, this often leads to less
confident or inaccurate estimations. In this paper, combined with a fuel-flow model, different
aircraft initial masses are computed independently using the total energy model and reference
model at first. It then adopts a Bayesian approach that uses a prior probability of aircraft mass
based on empirical knowledge and computed aircraft initial masses to produce the maximum a
posteriori estimation. Variation in results caused by dependent factors such as prior, thrust and
wind are also studied. The method is validated using 50 test flights of a Cessna Citation II aircraft,
for which measurements of the true mass were available. The validation results show a mean
absolute error of 4.3% of the actual aircraft mass.

1. Introduction

Aircraft mass is a fundamental parameter for studies on aircraft performance and trajectory prediction. However, data concerning
the mass of almost all modern commercial flights are treated as confidential information by airliners, which poses a challenge for the
research community. Studies from Jackson et al. (1999) and Coppenbarger (1999) have shown that having inaccurate aircraft mass
estimations introduces a significant source of error, which affects ground based trajectory predictions. The study of Thipphavong
et al. (2012) implemented an adaptive aircraft weight algorithm to improve the accuracy of climbing predictions. Fricke et al. (2015)
illustrated the significant influence of aircraft mass on fuel burn during continuous descent operations.

Within the air traffic management research community, several methods have been developed to estimate aircraft mass based on
flight data, either from radar data or more recently from ADS-B data. In two separate studies, Alligier et al. (2013, 2015) developed a
least-squares method and a machine-learning method, which focused on the climb phase of aircraft. In a similar approach considering
climbing aircraft, Schultz et al. (2012) implemented an adaptive estimation method for mass and thrust approximation. More re-
cently, Sun et al. (2016) used ADS-B data from takeoff to estimate the initial mass of an aircraft with two different analytical methods.
On the operational side, a different approach has been proposed by Lee and Chatterji (2010), which tries to calculate the weight of an
aircraft based on an approximation of each individual weight component, i.e. aircraft empty weight, fuel weight, and payload weight.

For most of these studies, the focus was on a specific part of the flight (takeoff or climb). It is often not possible to produce a
reasonable estimate for individual flights. One can only infer the possible distribution of aircraft mass based on a great number of
flights. This is not only due to the variance in the data, but also due to uncertainties in aircraft configuration, something that is
suggested in all of these studies. To develop a method that can estimate the mass of any flight becomes the focus of this paper.

https://doi.org/10.1016/j.trc.2018.02.022
Received 21 August 2017; Received in revised form 26 February 2018; Accepted 28 February 2018

⁎ Corresponding author.
E-mail addresses: j.sun-1@tudleft.nl (J. Sun), j.ellerbroek@tudelft.nl (J. Ellerbroek), j.m.hoekstra@tudelft.nl (J.M. Hoekstra).

Transportation Research Part C 90 (2018) 59–73

0968-090X/ © 2018 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/0968090X
https://www.elsevier.com/locate/trc
https://doi.org/10.1016/j.trc.2018.02.022
https://doi.org/10.1016/j.trc.2018.02.022
mailto:j.sun-1@tudleft.nl
mailto:j.ellerbroek@tudelft.nl
mailto:j.m.hoekstra@tudelft.nl
https://doi.org/10.1016/j.trc.2018.02.022
http://crossmark.crossref.org/dialog/?doi=10.1016/j.trc.2018.02.022&domain=pdf


In a preliminary study presented earlier by Sun et al. (2017a), the use of multiple mass estimations was identified as a potential
improvement for mass estimation, studying not just one specific flight phase, but a combination of all phases. This allows more
insight into aircraft mass to be inferred. In this paper, the mass estimation problem is considered as a single parameter Bayesian
inference problem (Gelman et al., 2014, p. 29), considering masses computed along the entire flight as ‘observations’. In addition to
multiple observations, prior knowledge on weight can be used to improve the estimation. For instance, aircraft will never operate
above their maximum takeoff weight or below their minimum operational weight. In practice, given an approximation of the number
of passengers, one can even further constrain the weight estimation range by making an estimate of the aircraft payload. These kinds
of prior knowledge can be very valuable for estimation of actual aircraft mass when applying Bayesian inference.

The remainder of this paper is structured as follows: first, this paper presents several existing methods to calculate aircraft mass
independently in each flight phase. Then, in Section three, a Bayesian inference approach is established to use these calculations as
independent measurements, combining a priori knowledge of initial aircraft mass probability distribution to produce a maximum a
posteriori estimation. The advantage of the Bayesian approach is that it takes into account prior probability distribution and physical
limitations of possible aircraft mass. It has the potential to produce an estimate for any given flight based on flight data with the
knowledge of aircraft type. Fig. 1 gives an illustration of this method.

Section four discusses the results for several aircraft types and parameter sensitivities. Section five uses a real flight dataset to
validate the Bayesian inference method. Finally, discussion and conclusions are presented in sections six and seven.

2. Individual aircraft mass estimates

This section describes five methods that can be used independently to compute aircraft mass at different flight phases. The total
energy model (TEM), shown in Eq. (1), is used in most of the methods. In addition, BADA3 aerodynamic coefficients are used to
calculate the thrust and drag in some of the phases when applicable (Nuic, 2014).
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Here, T and D are the thrust and drag of the aircraft, V a, , and Vz are the airspeed, acceleration, and vertical rate respectively.
C C C, ,D L d0, and Cdi are coefficients for drag, lift, zero lift drag, and lift-induced drag. ρ and S are the air density and the aircraft
reference wing surface. In addition, the forces acting on an airborne aircraft are also illustrated in Fig. 2.

With the complete flight trajectory based on the total energy model, mass can be computed at different phases as illustrated in
Fig. 3, where the subscripts TO, LOF, CL, DE, and APP represent takeoff, liftoff moment, climb, descent, and final approach,

Nomenclature

m aircraft mass (kg)
η thrust coefficient (–)
T total dynamic thrust (N)

∞T maximum static thrust (N)
D total drag force (N)
L aircraft lift force (N)

μ runway friction coefficient (–)
a aircraft acceleration (m/s2)
V true airspeed (m/s)
Vz vertical speed (m/s)
CD drag coefficient (–)
CL lift coefficient (–)
Cd0 zero lift drag coefficient (–)
Cdi induced drag coefficient (–)

Fig. 1. Flow chart of the estimation structure.
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