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A B S T R A C T

This paper proposes a novel approach to identify the pockets of activity or the community
structure in a city network using multi-layer graphs that represent the movement of disparate
entities (i.e. private cars, buses and passengers) in the network. First, we process the trip data
corresponding to each entity through a Voronoi segmentation procedure which provides a natural
null model to compare multiple layers in a real world network. Second, given nodes that re-
present Voronoi cells and link weights that define the strength of connection between them, we
apply a community detection algorithm and partition the network into smaller areas in-
dependently at each layer. The partitioning algorithm returns geographically well connected
regions in all layers and reveal significant characteristics underlying the spatial structure of our
city. Third, we test an algorithm that reveals the unified community structure of multi-layer
networks, which are combinations of single-layer networks coupled through links between each
node in one network layer to itself in other layers. This approach allows us to directly compare
the resulting communities in multiple layers where connection types are categorically different.

1. Introduction

Does a consistent community structure exist in the city-scale, and does it differ from one entity to another? This study aims to
answer this question by building graphs of mobility patterns for disparate entities (e.g., buses, bus passengers and cars) and revealing
their pockets of activity in a city network. The underlying characteristics of a city structure, such as spatial borders, commercial/
residential areas and accessibility of transportation network, influences individual travel behaviours and aggregated patterns that
result from them. For instance, natural and artificial boundaries (e.g. river, train tracks) define social and spatial organisation of a city
and largely affect the physical or perceived distance between nearby locations. Additionally, how the city centres, shopping districts
or school zones interact with the neighbouring areas illustrates the framework in which mobility patterns are formed. Nevertheless,
as urban forms are quite dissimilar for each entity (e.g. public transport network vs. car network), resulting aggregated patterns and
activity pockets might differ significantly.

The influence of city structure on travel patterns has been a long standing question in the area of geography (Handy, 1996).
However, these studies had limited conclusions due to unavailability of large-scale data sets and proper mathematical techniques
(Yue et al., 2014). These limitations have now been overcome with achievements in sensor technologies and advances in network
theory methods. A large variety of data sources has been used in the literature as a proxy for travel patterns; circulation of bank notes
(Brockmann et al., 2006; Thiemann et al., 2010), cell phone tower data (Toole et al., 2015; Çolak et al., 2016), transit smart card
transactions (Sun et al., 2013; Zhong et al., 2014; Alsger et al., 2018; Zhao et al., 2018), passenger flights (Guimera et al., 2005), call
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detail records (Iqbal et al., 2014; Alexander et al., 2015), taxi trips (Liu et al., 2015a), census household surveys (Saberi et al., 2016),
etc. Among them, big mobility data collected from passive sources such as smart cards, cell phones, GPS devices, enable us to
accurately and cost-effectively model the flows of people and vehicles around the city (Bar-Gera, 2007; Pelletier et al., 2011; Chen
et al., 2014). The rise of big mobility data has also made it possible to investigate the relations between travel patterns and city
structure from a time geography perspective (Liu et al., 2015b; Chen et al., 2016).

Travel flows and mobility patterns resulting from them have been largely exploited in the context of network theory or complex
networks. Analysing human mobility patterns, understanding spatial distribution of activity and how these are intertwined with each
other has been largely studied and discussed from a complex network theory perspective, and worthwhile insights into the way cities
and people are organized have been reported in the literature (Brockmann et al., 2006; Gonzalez et al., 2008; Barthélemy, 2011).
Spatial structure of mobility graphs is, in fact, essential to understanding the interactions between neighbourhoods, identifying the
infrastructure needs and improving the operational aspects. Such structures can be revealed by partitioning the network into natural
groups of nodes, or, in other words, by detecting communities. In the field of complex networks, communities refer to groups of nodes,
within each of which nodes are connected more densely and between which nodes are connected more sparsely. And, community
detection is the process of identifying the underlying community structure in a given graph by dividing the network into groups of
nodes with dense connections internally and sparser connections between groups (Fortunato, 2010). Consequently, this technique
provides sub-structures of a network that represent natural partitions or functional units of the system. Community detection has
been applied on a global scale to determine airport clusters (Guimera et al., 2005), on national scale to understand whether ad-
ministrative boundaries affect human communication patterns (Ratti et al., 2010) and on city-scale to reveal sub-regions and examine
urban structure (Zhong et al., 2014, 2015; Liu et al., 2015a). Note that these studies focus on a single data source (e.g., phone records,
transit smart card) and unveil the spatial structure from a particular interaction perspective. Nevertheless, spatial networks, espe-
cially transportation networks, are multi-domain, multi-layer structures where partitioning at each layer might take different forms.

In this study, using movement data from three sources, i.e. bus GPS observations, smart card transactions and roadside Bluetooth
detector records, we build three layers of graphs indicating the movement patterns for buses, bus passengers and cars, respectively.
We then identify the community structure in these graphs from a layer-by-layer and a multi-layer perspective, and compare the
divisions across the three layers to unveil the interactions between them and to expose the underlying spatial structure. A major
contribution of this paper is the development of a unified network that shares the same node set across different layers, thereby
allowing the construction of mobility graphs that represent trajectories from disparate sources in a common form and thus enabling
the comparison of community structures across layers. To the best of our knowledge, this work is the first attempt to build a multi-
layer transportation framework and investigate community detection problem across the layers. Our findings, revealing comparable
features of the network organisation in the bus and passenger layers and the dependency of the movement patterns on the chosen
transportation mode, provide insights for the planning and design of transportation systems. Another major contribution is the
construction of the supply graph (e.g., bus movements) which represents the service provided by the public transport vehicles. In the
demand graphs (e.g., passenger and car layers), the interaction between nodes is defined by a single link between origin and des-
tination points, whereas the same points hardly represent any activity in the supply networks. The approach we follow here can be
further exploited in the context of layered complex networks to facilitate the description and analysis of supply networks (Kurant and
Thiran, 2006). This will be further discussed in the next section.

The rest of the paper is organized as follows. In Section 2, we briefly describe the data sets, explain the processing step which is
necessary to map different sources of data on the same network and outline the applied community detection techniques. In Section
3, we present the properties of the resulting graphs, discuss the results of the layer-by-layer and the multi-layer community detection
and study the interactions between the layers. In Section 4, we provide a discussion and conclude the paper.

2. Methodology

A comprehensive analysis of mobility patterns at the city-scale requires the consideration of multiple entities, e.g. people/vehicles
using/representing distinct transportation modes. Therefore, this study exploits multiple sources of mobility data, builds analogous
graphs of movement patterns for each entity and identifies the community structures.

2.1. Study network and data

All the data sets employed in this paper are collected from the Brisbane metropolitan area, Australia between 6am-10am on
Tuesday, 22/09/2015. The list of the data sets is as follows:

• bus trajectory data containing GPS traces,

• bus passenger trajectory data constructed from smart card transactions,

• car trajectory data obtained from roadside Bluetooth detection records.

The bus trajectory data were obtained from archived data of real-time bus tracking information in General Transit Feed
Specification - Realtime (GTFS-RT) format, provided by TransLink (Brisbane’s sole transit agency). A total of 4,945 bus trajectories
were obtained. An example of bus trajectory data is shown in the top left of Fig. 2.

For the bus passenger data, go card (Brisbane’s smart card system) transaction records were used, where each transaction re-
presents a single trip, the act of travelling from point A to point B with no transfers. Each transaction provides the information on the
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