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a b s t r a c t

How to calibrate the parameters of car-following models based on observed traffic data is a
vital problem in traffic simulation. Usually, the core of calibration is cast into an optimiza-
tion problem, in which the decision variables are car-following model parameters and the
objective function usually characterizes the difference between empirical vehicle move-
ments and their simulated correspondences. Since the objective function is usually nonlin-
ear and non-convex, various greedy or stochastic algorithms had been proposed during the
last two decades. However, the performance of these algorithms remains to be further
examined. In this paper, we revisit this important problem with a special focus on the geo-
metric feature of the objective function. First, we prove that, from a global perspective,
most existing objective functions are Lipschitz continuous. Second, we show that, from a
local perspective, many of these objective functions are relatively flat around the global
optimal solution. Based on these two features, we propose a new global optimization algo-
rithm that integrates global direct search and local gradient search to find the optimal solu-
tion in an efficient manner. We compare this new algorithm with several existing
algorithms, including Nelder–Mead (NM) algorithm, sequential quadratic programming
(SQP) algorithm, genetic algorithm (GA), and simultaneous perturbation stochastic approx-
imation (SPSA) algorithm, on NGSIM trajectory datasets. Results demonstrate that the pro-
posed algorithm has a fast convergence speed and a high probability of finding the global
optimal solution. Moreover, it has only two major configuration parameters that can be
easily determined in practice.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Microscopic simulation plays an important role in the analysis and design of traffic facilities. It provides a flexible
platform on which various traffic scenarios can be studied in a controlled maneuver without disrupting real-world traffic
(Chung and Dumont, 2009; Barceló, 2010). Usually, a traffic simulation platform consists of several models which address
different aspects of traffic behavior. In this paper, we will focus on longitudinal car-following models (Punzo and
Simonelli, 2005; Gunay, 2007; Punzo and Tripodi, 2007; Kesting and Treiber, 2008; Ossen and Hoogendoorn, 2008;
Tordeux et al., 2010; Chen et al., 2012, 2015; Ciuffo et al., 2012a,b).
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Most microscopic simulation tools adopt certain ordinary difference equations characterized by a few parameters to
model drivers’ car-following actions. In order to guarantee the selected simulation models well reproduce traffic phenomena
observed in practice, different calibration methods have been proposed to appropriately determine the model parameters
(Wu et al., 2003; Ahn et al., 2004; Brockfeld et al., 2005; Panwai and Dia, 2005; Punzo and Simonelli, 2005; Kesting and
Treiber, 2008; Ossen and Hoogendoorn, 2008; Punzo et al., 2012).

In some microscopic car-following models, a few parameters have physical equivalents in reality, e.g., desired velocity
used in Gipps’ car-following model (Gipps, 1981; Wilson, 2001; Punzo and Tripodi, 2007; Ciuffo et al., 2012a,b). Other
macroscopic features of traffic flow parameters, e.g., free flow velocity, critical density and jam density, are important in
many models and can be straightforwardly estimated from loop detector data (Rakha et al., 2007; Rakha and Gao, 2011).
However, in lots of car-following models, more parameters cannot be simply derived from macroscopic measurements
(Zhang and Kim, 2005; Punzo and Simonelli, 2005; Kesting and Treiber, 2008; Ossen and Hoogendoorn, 2008; Ciuffo and
Punzo, 2014).

As a result, the car-following model calibration using empirical vehicle trajectory data gained increasing interests
recently, since trajectory data provided much more details of driving actions on the microscopic level (Punzo and
Simonelli, 2005; Kesting and Treiber, 2008; Ossen and Hoogendoorn, 2009; Chiabaut et al., 2010; Punzo et al., 2012). There
was an approach used for the first time in car-following calibration by Ossen and Hoogendoorn (2008) and successively by
Punzo et al. (2012), making use of laboratory experiments to compare algorithms in a fair way, that is using the model itself
to generate synthetic data on which performing calibration. This allows the analysist to know what the global optimum is.
How to accurately estimate model parameters from trajectory then becomes an issue of importance; since none of existing
car-following models can perfectly fit all of the empirical trajectories, due to various influence factors such as time-varying
dynamics of driving actions (Wagner, 2012; Koutsopoulos and Farah, 2012), heterogeneity of different drivers (Ossen and
Hoogendoorn, 2007, 2011; Wang et al., 2010), measurement noises (Kesting and Treiber, 2008; Ossen and Hoogendoorn,
2008) and asymmetric characteristics in car-following and their impacts on traffic flow evolution (Li et al., 2013a; Wei
and Liu, 2013).

Recently, Punzo et al. (2012) made a deep investigation about methodological aspects in the calibration of car-following
models, including a comparison of optimization algorithms. Further, different indicators were proposed to measure algo-
rithm performance not only in terms of the objective function value but also in terms of the distance of calibrated parameters
from the global ones. In that research, the optimization performance indicator was proposed to provide a measure of the
accuracy of the best solution in a calibration experiment in terms of both the parameter values and the score of the objective
function. In this paper, we follow the same measures of performance (time series of the follower’s speed and spacing
between leader and follower) and adopt one of the goodness-of-fit functions (i.e., root mean square error) used in Punzo
et al. (2012), since the normalized optimization performance indicator cannot be achieved due to unknown true global opti-
mum. The main methodological contribution of this study is to propose a combined two-stage optimization algorithm for
trajectory data based car-following calibration.

In many solutions for the car-following model calibration, parameters were taken as constant and uncertainties were
viewed as an additive disturbance to system dynamics. The core of calibration can thus be casted into an optimization prob-
lem, in which decision variables are model parameters and the objective function usually characterizes the difference
between empirical vehicle movements and their simulated correspondences.

In the simulation, usually two consecutive vehicles are considered at one time. The state of the leading vehicle is updated
according to empirical observations, and the state of the following vehicle is updated via the selected car-following model.
According to simulation settings, we can further categorize the existing calibration approaches into two types (Wagner et al.,
2010; Treiber and Kesting, 2013a).

The first category is called local-fit or direct-fit, the endogenous model variables are compared against the data,
separately for each data point. Specifically, the empirical position and velocity information of both vehicles are used as
input at each simulation time step. Consequently, the outputs of the car-following model at the next time steps can be
calculated. The modeled accelerations are compared against the empirical ones, separately for each time step, to obtain
the samples of additive disturbance. If the distribution of additive disturbances is further assumed, we can directly fit
the car-following model with respect to these sampled disturbances. For example, the maximum likelihood estimation
(MLE) was applied to maximize the ‘‘agreement” of model parameters with the observed data (Hoogendoorn and
Ossen, 2005; Hoogendoorn and Hoogendoorn, 2010; Kim et al., 2013). Since the induced variables (usually the accelera-
tions at different time steps) are separable in the objective function, the optimization problems of this category are
usually easy to solve.

The second category is called global-fit or indirect-fit, a complete data trajectory is compared with a simulated trajectory.
The car-following model is not directly calibrated by independently comparing the endogenous model variables with the
observations. Instead, only the empirical position and velocity information of the leading vehicle are used as input at each
time step. The initial state of the following vehicle is given, too. Then, the movements of the following vehicle at the rest of
time steps are calculated sequentially. Finally, the simulated trajectory is compared with the empirical one. Since the
induced variables (usually the velocities or positions at different time steps) are determined in a sequential manner, the
objective functions of this category are usually nonlinear, non-convex and difficult to optimize.

It was demonstrated in Punzo and Simonelli (2005), Wagner et al. (2010), and Treiber and Kesting (2013a) that these two
kinds of approaches might generate notably different choices of parameter values, although the same trajectory dataset was
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