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a b s t r a c t

We propose machine learning models that capture the relation between passenger train
arrival delays and various characteristics of a railway system. Such models can be used
at the tactical level to evaluate effects of various changes in a railway system on train
delays. We present the first application of support vector regression in the analysis of train
delays and compare its performance with the artificial neural networks which have been
commonly used for such problems. Statistical comparison of the two models indicates that
the support vector regression outperforms the artificial neural networks. Data for this
analysis are collected from Serbian Railways and include expert opinions about the influ-
ence of infrastructure along different routes on train arrival delays.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Train delays are causing substantial losses to railway operators and passengers. The National Audit Office in United
Kingdom reported that there were about 800,000 delays on the British national rail network during 2006–2007. This led
to 14 million train-minutes of delays, which cost the passengers about £1 billion in lost time (Burr et al., 2008; Preston
et al., 2009). Such numbers provide evidence that reducing train delays in an economically viable way would be highly desir-
able. An important step in this direction is to establish a functional relation between train delays and various characteristics
of a railway system (i.e., infrastructure, timetables and trains). Such a functional relation would allow planners to evaluate
how changes in the system would affect delays, and thereby help them determine the changes that would reduce delays in
the most economical way.

Let us consider two specific situations in which a functional relation between train delays and characteristics of the rail-
way system would be useful for tactical planning:

� Investment planning. Managers are interested in reducing train arrival delays at a station by investing in the infrastructure.
The investments may include track renewal to increase the speed profile along some routes, building an overpass to avoid
train conflicts, or introducing more advanced signaling systems that resolve rights-of-way more efficiently. A functional
relation between train delays and characteristics of the infrastructure would enable the planners to evaluate the effects
that different infrastructure projects (or their combination) would have on delays. This would assist the management in
selecting the most effective investment plan, given the available budget.
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� Simulation analysis. Planners are interested in examining effects of changes in the railway system on bottlenecks, capacity
utilization, or delay propagation. Such analysis is typically conducted by simulating specific traffic scenarios, given the
information about the infrastructure and train movements (Hansen and Pachl, 2008). Since trains often deviate from their
timetables, simulation models must account for delays to validly represent the real-world operations. A functional rela-
tion between train delays and characteristics of the system can be used to estimate initial arrival delays to the observed
section or intersection. These initial delays can be used further as inputs to a simulation model to obtain more realistic
estimates of the capacity utilization, delay propagation, or bottleneck effects at downstream locations.

The described situations motivate research on determining the functional relation between passenger train delays and
various characteristics of the railway system. We shall refer to this functional relation as a train delay model that, given a
set of inputs (i.e., information about the system), returns train delays. As implied in the motivating examples, we focus
on the analysis of historical data and develop train delay models that can be used for tactical planning. This should not
be confused with the analysis of train delays at the operational level and development of models for online predictions which
are used for real-time traffic management. We review below these two separate lines of research:

� Operational level. Models for real-time prediction of train delays are used to detect potential instabilities in the timetable
and alert the dispatchers to reschedule some trains. Train delays are predicted from data describing arrivals and depar-
tures, which are gathered in real-time Kecman (2014). Train movement data are collected from the infrastructure track
occupation records, sensors in rolling-stock, or mobile GPS devices. Flier et al. (2009a) apply an algorithm that sweeps
through the delay of the incoming trains and efficiently finds systematic dependencies in large-scale railway delay data.
A delay propagation algorithm proposed by Hansen et al. (2010) uses an online model based on timed event graphs to
predict running and arrival times. This approach is extended at the microscopic level by Kecman and Goverde (2014),
who propose a model based on a timed event graph with dynamic arc weights that accurately captures train behavior
and interactions on open track sections and in stations. Berger et al. (2011) propose a stochastic model for delay prop-
agation in large transportation networks, which is suited to process massive streams of real-time data. Delay propagation
across the network is modeled with max-plus algebra and analyzed based on timetable properties, such as realizability
and stability (Goverde, 2010). A related line of research in the area of traffic predictions develops multivariate state space
models that use state variables to describe a system by a set of first-order differential equations. In traffic research, state
space models are often applied to multiple input–output systems of stochastic variables (Stathopoulos and Karlaftis,
2003; Dong et al., 2014). State space models for train delays could also process train describer messages and historical
data to compute train delays using a Kalman filter. An advantage of state space models would be their ability to handle
large networks effectively.
As mentioned above, information from online prediction models can be used for real-time traffic management. For exam-
ple, when delays or disturbances are predicted (or observed), it is vital to quickly retrieve a feasible train schedule.
Krasemann (2012) achieves this with a greedy algorithm which efficiently finds good feasible schedules. To minimize
train delays and missed connections due to disturbances, Corman et al. (2012) apply two heuristic algorithms to select
the connections to be enforced. To reschedule duties of train drivers, Veelenturf et al. (2012) use column generation to
solve the crew rescheduling problem with retiming. Corman and Quaglietta (2015) propose a rescheduling tool coupled
with a railway traffic simulation model and analyze influence of different rescheduling parameters, prediction models
and control delays on system performance. A comprehensive review of the recent literature on rescheduling tools and
their applications in train operations is presented by Corman and Meng (2014). The relevant models are classified by their
problem scope, model type and solution approach, with a special focus on current train positions and traffic state
prediction.
� Tactical level. At the tactical level, train delay models have been applied to both timetabling and resource planning.

Timetables are tested for robustness using the probability distributions of process durations which are derived from his-
torical traffic realization data. Conclusions from these tests are later used to improve timetable robustness (Medeossi
et al., 2011). In a study on passenger trains in the Netherlands, a stochastic approach to cyclic timetable optimization
is used to minimize the average delay of trains (Kroon et al., 2008). Büker and Seybold (2012) propose a model with
an activity graph where delay propagation is captured analytically, thus enabling precise and efficient calculations even
for large networks. Goverde et al. (2013) compare and quantify the infrastructure occupancy both under scheduled and
disturbed conditions. Their approach takes into account stochastic delays, dynamic responses to the signaling system, and
typical traffic control actions for dealing with conflicts and possibly reducing delay propagation. A comprehensive review
of railway disruption management for resource planning (timetable adjustment, rolling stock and crew rescheduling) is
presented by Jespersen-Groth et al. (2009).

Various techniques have been used to analyze train delays at both operational and tactical level. They can be roughly clas-
sified into three groups:

� Analytic models. Probability distributions of train delays are derived from track occupancy and release records, or other
data containing information on train movements. The obtained distributions of the underlying random variables are then
used within stochastic queuing models (Huisman et al., 2002; Schwanhäußer, 1974). An analytic stochastic model is used
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