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a b s t r a c t

Accurate and reliable forecasting of traffic variables is one of the primary functions of Intel-
ligent Transportation Systems. Reliable systems that are able to forecast traffic conditions
accurately, multiple time steps into the future, are required for advanced traveller informa-
tion systems. However, traffic forecasting is a difficult task because of the nonlinear and
nonstationary properties of traffic series. Traditional linear models are incapable of model-
ling such properties, and typically perform poorly, particularly when conditions differ from
the norm. Machine learning approaches such as artificial neural networks, nonparametric
regression and kernel methods (KMs) have often been shown to outperform linear models
in the literature. A bottleneck of the latter approach is that the information pertaining to all
previous traffic states must be contained within the kernel, but the computational com-
plexity of KMs usually scales cubically with the number of data points in the kernel. In this
paper, a novel kernel-based machine learning (ML) algorithm is developed, namely the
local online kernel ridge regression (LOKRR) model. Exploiting the observation that traffic
data exhibits strong cyclic patterns characterised by rush hour traffic, LOKRR makes use of
local kernels with varying parameters that are defined around each time point. This
approach has 3 advantages over the standard single kernel approach: (1) It allows param-
eters to vary by time of day, capturing the time varying distribution of traffic data; (2) It
allows smaller kernels to be defined that contain only the relevant traffic patterns, and;
(3) It is online, allowing new traffic data to be incorporated as it arrives. The model is
applied to the forecasting of travel times on London’s road network, and is found to outper-
form three benchmark models in forecasting up to 1 h ahead.
� 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/3.0/).

1. Introduction

The short term forecasting of traffic variables such as speeds, flows and densities is one of the primary goals of Intelligent
Transportation Systems (ITSs), with applications in dynamic signal control, advanced traffic management systems (ATMSs)
and advanced traveller information systems (ATISs) (Vlahogianni et al., 2004). To date, a wide range of methods have been
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used for short term traffic forecasting, which can be broadly separated into two categories: (1) parametric methods, and; (2)
machine learning (ML) methods.1 The former type includes statistical (space) time series methods such as the (space–time)
auto-regressive integrated moving average (ST)ARIMA model family (Billings and Yang, 2006; Cheng et al., 2010;
Kamarianakis and Prastacos, 2005; Williams and Hoel, 2003), state space models (Okutani and Stephanedes, 1984;
Stathopoulos and Karlaftis, 2003), and Bayesian networks (Anacleto et al., 2013a; Fei et al., 2011; Sun et al., 2004, 2005,
2006; Zheng et al., 2006). Comprehensive reviews can be found in Vlahogianni et al. (2004) and, more recently Vlahogianni
et al. (2014). These methods typically assume that the data being described are stationary. That is, they must have constant
mean and variance. If this assumption is not satisfied, then the data must be transformed through differencing, or some other
transformation (Kendall and Ord, 1990). It is often found that these assumptions are difficult to satisfy, leading standard para-
metric methods to perform poorly. This has led to the recent development of local parametric model specifications that attempt
to model the local characteristics of traffic data in time and/or space (Ding et al., 2010; Kamarianakis et al., 2012; Min and
Wynter, 2011; Min et al., 2009, 2010).

An alternative approach is to model the data directly in a nonlinear machine learning (ML) framework. ML methods typ-
ically make minimal explicit assumptions about the data generating process, and instead try to learn the characteristics of
the data through exposure to examples (Mitchell, 1997). ML methods have often been shown to outperform parametric
methods in the literature, although a recent comparison study by Chen et al. (2012) suggests that data preprocessing is just
as important as model choice. The most widespread ML method in the short term traffic forecasting literature is the artificial
neural network (ANN). ANNs have a long history of successful implementation in traffic forecasting, and readers are directed
to Dougherty (1995) for a review of the early work. As the power of computers has increased, researchers have developed
increasingly sophisticated ANNs for forecasting traffic variables both on highways (see, e.g., Chen and Grant-Muller, 2001;
van Lint et al., 2005; van Hinsbergen et al., 2009; Huang and Sadek, 2009; Li and Rose, 2011) and on urban networks
(see, e.g. Ledoux, 1997; Yin et al., 2002; Vlahogianni et al., 2005, 2007). The most successful implementations circumvent
the traditional black box problem of neural networks by explicitly incorporating domain knowledge into the model struc-
ture. For example, the topological structure of the road network can be explicitly represented in the nodes of the hidden layer
of an ANN, making the internal function of the model more transparent (van Lint et al., 2005; van Lint, 2006). In a similar
vein, Vlahogianni et al. (2005) frame their genetically optimised modular ANN as a multivariate non-linear time series
model, fed with spatially and temporally lagged data. The recent work of (Chan et al., 2013a,b; Chan et al., 2012a,b) has fur-
ther enhanced the position of ANNs at the forefront of the traffic forecasting literature. Other ML methods that have been
applied to traffic forecasting include fuzzy rule based systems (Dimitriou et al., 2008) and hybrid models (Van Der Voort
et al., 1996; Hofleitner et al., 2012). Karlaftis and Vlahogianni (2011) summarise the main differences (and similarities)
between ML methods and parametric methods.

Recent developments have seen the application of kernel methods (KMs) to traffic forecasting. The term kernel method is
an umbrella term for a broad set of techniques that share a common characteristic. They comprise two components: (1) a
function that maps the input data into a high (possibly infinite) dimensional space, known as a feature space, and; (2) a learn-
ing algorithm capable of discovering linear patterns in that space (Shawe-Taylor and Cristianini, 2004). Mapping to the fea-
ture space is accomplished efficiently using a kernel function, hence the term KM. Because linear relations are sought in the
feature space, a broad range of theoretically well founded and efficient linear algorithms can be used. To date, many linear
algorithms have been kernelised including ridge regression (Hoerl and Kennard, 1970; Saunders et al., 1998), the generalised
portrait (Vapnik and Lerner, 1963; Boser et al., 1992), principal components analysis (Schölkopf et al., 1997) and canonical
correlation analysis (Hotelling, 1936; Hardoon et al., 2004) amongst many others. KMs are modular in nature, meaning that
any kernel algorithm can be applied using a particular kernel, and vice versa (Shawe-Taylor and Cristianini, 2004). This gives
them great flexibility as a tool for solving a wide range of practical problems. KMs are an attractive approach for modelling
nonlinear and nonstationary data because they combine the advantages of principled, linear learning algorithms such as
ordinary least squares (OLS) with nonlinear solutions.

The most widely used KM in traffic forecasting is Support Vector Regression (SVR). Wu et al. (2004) first used SVR for the
forecasting of travel times on Taipei’s freeway system. Travel times over three distances for 28 consecutive days are used to
train a model to forecast the following 7 days’ travel times in a one-step-ahead scenario. The results are compared to a cur-
rent–time predictor and a historical mean predictor and are found to be superior in all cases. The performance of SVR com-
pares favourably with that of ANNs. Vanajakshi and Rilett (2007, 2004) compare the performance of SVR and ANNs in
forecasting travel times on San Antonio’s freeway system using a forecast horizon varying from 2 min to 1 h ahead. It is
found that SVR performs better than ANNs when the size of the training set is small. Zhang and Xie (2008) used m-SVR
for highway traffic volume forecasting, and found the method to outperform a multi-layer feedforward neural network
(MLFNN). Other KMs have been applied to traffic forecasting with similar success. Xie et al. (2010) apply Gaussian processes
regression (GPR) to highway traffic volume forecasting, and the results are compared with the m-SVR model of Zhang and Xie.
The results are found to be similar, but the GPR model has the advantage of providing error bounds on the forecasts.

One of the main challenges in applying KMs lies in deciding what information to include in the kernel. In KMs a kernel
induced feature space is constructed from a database of historical data patterns to store the relevant information about a

1 ML methods are often referred to as nonparametric methods (Vlahogianni et al., 2004) or computational intelligence (CI) methods (Karlaftis and
Vlahogianni, 2011).
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