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To reconstruct surface from unorganized points in three-dimensional Euclidean space, we propose a novel ef-
ficient and fast method by using [, gradient minimization, which can directly measure the sparsity of a solution
and produce sharper surfaces. Therefore, the proposed method is particularly effective for sharpening major
edges and removing noise. Unlike the Poisson surface reconstruction approach and its extensions, our method
does not depend on the accurate directions of normal vectors of the unorganized points. The resulting algorithm

is developed using a half-quadratic splitting method and is based on decoupled iterations that are alternating
over a smoothing step realized by a Poisson approach and an edge-preserving step through an optimization
formulation. This iterative algorithm is easy to implement. Various tests are presented to demonstrate that our
method is robust to point noise, normal noise and data holes, and thus produces good surface reconstruction

results.

1. Introduction

Given a set of unorganized three-dimensional (3D) points, the pur-
pose of surface reconstruction is to restore the surface of the original
object where the points are scanned. The industry of 3D printing has
emerged in the past few years, thus 3D surface reconstruction to vi-
sualize objects in space has become one of the main issues in the fields
of both applied mathematics (Mancosu et al., 2005) and computer
science (Bellocchio et al., 2013). In the past few decades, many algo-
rithms have been developed to solve the surface reconstruction problem
(Avron et al., 2010; Berger et al., 2017; Bodis-Szomorii et al., 2017;
Calakli and Taubin, 2011; Carlini and Ferretti, 2017; Huang et al.,
2009; Kazhdan et al., 2006; Kazhdan and Hoppe, 2013; Khatamian and
Arabnia, 2016; Kolluri et al., 2004; Li and Kim, 2015; Li et al., 2014;
Lipman et al., 2007; Liu and Wang, 2012; Liu et al., 2016; Ohtake et al.,
2005; Reinhold et al., 2014; Xiong et al., 2014; Zagorchev and
Goshtasby, 2012; Zhao et al., 2001, 1998). However, it is still a very
challenging task due to the missing information of point orders, or-
ientations, connections, as well as complex surface topologies. In gen-
eral, existing surface reconstruction techniques can be classified into
two types: explicit mesh-based reconstruction and implicit volume-
based reconstruction.
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The explicit mesh-based reconstruction techniques use the un-
organized points directly to form a triangular mesh. Kolluri et al. (2004)
introduced a noise-resistant method for reconstructing a watertight
surface from point cloud data. Lipman et al. (2007) presented a para-
meterization-free projection algorithm that does not need the local
parameters. This approach was extended in Huang et al. (2009) and
Reinhold et al. (2014). Xiong et al. (2014) proposed a unified method
that treats connectivity construction and geometry as one joint opti-
mization problem. Avron et al. (2010) presented an [;-sparse approach
for reconstruction of point set surfaces with sharp features. All these
mesh-based reconstruction schemes are precise, but they have diffi-
culties in dealing with noise, complex topologies, and especially holes
in data.

The implicit volume-based reconstruction approaches generally
construct an implicit volume-function from the input points, and then
obtain the restored surface from the iso-surface of the volume-function.
Liu et al. (2016) and Liu and Wang (2012) introduced a method to fit
the points with radial basis functions, then the surface is defined as the
zero level-set of those radial basis functions. Carlini and Ferretti (2017)
proposed a semi-Lagrangian method coupled with radial basis function
interpolation for computing a curvature-related level set model.
Ohtake et al. (2005) suggested an implicit surface representation using
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multi-level partition of a unity. The local shape was approximated by a
weighted piecewise quadratic function. Zhao et al. (2001, 1998) pro-
posed the construction of a stopping function that acts to stop the
evolution when the contour reaches the surface data points. The main
advantage of these methods is that it can easily reconstruct surface with
complex topologies, and can also be implemented concisely. A curva-
ture-adaptive implicit surface reconstruction for irregularly spaced
points in 3D space was introduced in Zagorchev and Goshtasby (2012).
One of the best-known techniques is Poisson surface reconstruction
Kazhdan et al. (2006), in which the implicit function is used as the
indicator function of the volume bounded by the surface. This function
is obtained by solving a Poisson equation and is identically equal to one
inside, zero outside, and discontinuous on the reconstructed surface.
The main disadvantage of this method was improved by Kazhdan and
Hoppe (2013) adding constraints on the points to avoid over-smoothing
of the reconstructed surface. Furthermore, Calakli and Taubin (2011)
suggested adding a higher-order regularization term and introduced the
Hessian matrix of the indicator function. Recently, we presented a novel
fast and accurate phase field model for surface embedding narrow vo-
lume reconstruction from an unorganized surface data set. The methods
proposed in Li et al. (2014) and Li and Kim (2015) were based on the
Allen-Cahn (AC) equation (Allen and Cahn, 1979), which has the mo-
tion by the surface mean curvature and can be applied to image pro-
cessing problems (Li and Kim, 2011, 2012). We choose the AC equation
because an accurate and fast hybrid numerical solver is available
(Li et al., 2010). The phase field model can be directly used to re-
construct a surface from the point cloud.

All these implicit methods used the 1;- or l,-norm in their proposed
minimization or energy term. However, sometimes they suffer from a
tendency to oversmooth the data. To produce sharper surfaces than
either the ;- or lr-norm, in this paper, we present a novel accurate and
fast method by using [, gradient minimization, which can directly
measure the sparsity of a solution and produce a sharper surface.
Therefore, the proposed method is particularly effective for sharpening
major edges and removing noise. To the best of the authors’ knowledge,
there are no existing methods for surface reconstruction using the l,-
norm, which can produce the sparsest solutions. Unlike the Poisson
surface reconstruction approach and its extended approaches, our
method does not depend on accurate directions of normal vectors of the
unorganized points. The resulting algorithm is developed by using a
half-quadratic splitting method (He et al., 2014) and is based on de-
coupled iterations that are alternating over a smoothing step by a
Poisson approach and an edge-preserving step using an optimization
formulation. This iterative technique is fast, simple, and easy to im-
plement. Various numerical tests are presented to demonstrate that our
method is robust to point noise, normal noise, and data holes, and thus
produces good surface reconstruction results.

Our paper is organized as follows. In Section 2, the proposed
method for surface reconstruction is given. We describe the proposed
optimization method in Section 3. In Section 4, experimental results
and comparisons are given. We draw the conclusions in Section 5. In
Appendix B, we present the numerical solver.

2. Description of the proposed model

The implicit method uses the data set to define a signed distance
function on Cartesian grids and the reconstructed surface is defined as
the zero iso-surface of the signed distance function. Let us briefly review
the definition of the signed distance function. At a point x in the domain
Q, we denote by X the data point that is closest to x. Then, we define
the signed distance function as

d(x) = s(x)d (x). 1)

Here d(x) is the unsigned distance function, which is defined as
d (x) = ||x — X|| and s(x) is the sign of the signed distance function d(x),
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which is defined as
s(x) = sign((x — X)-N(X)). 2)

Here, sign() is the sign function, which is defined as 1 or — 1 for positive
or for negative arguments, respectively and N is the outward normal
vector at the surface point. The inner product field is defined as the
signed distance of a grid point to the tangent plane of the closest surface
point. However, even the normal vectors are given with high accuracy,
if the vectors x —X and N(X) are nearly perpendicular, i.e.,
x —X)-NRX) ~ 0, or N(X) is with noise, s(x) will be with noise. In
practice, there are outliers or conflicting points in an unorganized point
cloud. The normal vectors for the point cloud may be absent in practice.
However, the direction vectors exist when the points are scanned from a
3D machine. Note that the normal information is not necessary for our
proposed method. Although s(x) is with noise, the numerical tests in
Section 4 indicate that the proposed method can accurately remove
noise and produce good results. Let us consider the following I, gradient
regularization version:

n;in fﬂ g IVl dx, 3)

where
g(®) = tanh(d (®)/(V2£)). @

Here, ¢ is related to the interface transition thickness. g(x) is a weighted
function (see Fig. 1(b) and (d)), which is almost zero near the data set
and is non-negative in the other regions. The gradient
V¢ (x) = (0x¢, 9,¢, 9,¢) for each grid x denotes the vector differential
operator along the x-, y-, and z-directions. The ly-norm of a vector V¢,
i.e., [|V@ll,=10xpI°+18,4° + 10,4I°, which directly measures the sparsity
and enforces the surface to be sharper. Here, we define 0° = 0. The
initial surface ¢°(x) (see Fig. 1(c) and (d)) is chosen as

#°(x) = tanh(d (x)/(~/28)), (5)

which is defined by #°(x) = 1 in the interior region and ¢°(x) ~ —1 in
the exterior region. The reconstructed surface is defined by ¢°(x) = 0.
The initial surface is usually not bad because most of the given data
points are located at the reconstructed surface. Note that our approach
does not require all exterior (interior) grid points to be identified cor-
rectly. We identify as many correct exterior grid points as possible
because a good initial implicit surface can reduce the computational
cost significantly.
The following points should be noted:

(1) Since the function g(x) is almost zero near the data set and is non-
negative in the other regions, g(x) also acts to stop the evolution
when the contour reaches the surface data points.

(2) The lp-norm minimization for V¢(x) can produce sharper surface
edges than those of either [;-norm or l-norm.

(3) Combining the above two advantages, the reconstructed surface is
close to the original point clouds and has sharper surfaces with high
quality.

We need to define the value of the function along the domain
boundary for Eq. (3). If we assume that the reconstructed surface is
away from the boundary of the domain, we can use the Dirichlet
boundary condition, ¢ = —1. Meanwhile, the zero Neumann boundary
condition enforces that the normal derivative is zero along the
boundary. A periodic boundary condition can also be used because the
triply periodic minimal surfaces exist (Li and Guo, 2017; Li et al., 2016;
Torquato and Donev, 2004).

3. Optimization of the proposed model

The minimization problem (3) is difficult to optimize due to the
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