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A B S T R A C T

In this paper, we propose a new video Super-Resolution (SR) method by jointly modeling intra-frame re-
dundancy and inter-frame motion context in a unified deep network. Different from conventional methods, the
proposed Spatial-Temporal Recurrent Residual Network (STR-ResNet) investigates both spatial and temporal
residues, which are represented by the difference between a high resolution (HR) frame and its corresponding
low resolution (LR) frame and the difference between adjacent HR frames, respectively. This spatial-temporal
residual learning model is then utilized to connect the intra-frame and inter-frame redundancies within video
sequences in a recurrent convolutional network and to predict HR temporal residues in the penultimate layer as
guidance to benefit estimating the spatial residue for video SR. Extensive experiments have demonstrated that
the proposed STR-ResNet is able to efficiently reconstruct videos with diversified contents and complex motions,
which outperforms the existing video SR approaches and offers new state-of-the-art performances on benchmark
datasets.

1. Introduction

Video super-resolution (SR) aims to produce high-resolution (HR)
video frames from a sequence of low-resolution (LR) inputs. In recent
years, video super-resolution has been drawing increasing interest from
both academia and industry. Although various HR video devices have
been developed constantly, it is still highly expensive to produce, store
and transmit HR videos. Thus, there is a great demand for modern SR
techniques to generate HR videos from LR ones.

The video SR problem, as well as other signal super-resolution
problems, can be summarized as restoring the original scene xt from its
several quality-degraded observations {yt}. Typically, the observation
can be modeled as

= + = …t Ty D x v , 1, , .t t t t (1)

Here Dt encapsulates various signal quality degradation factors at the
time instance t, e.g., motion blur, defocus blur and down-sampling.
Additive noise during observation at that time is denoted as vt.
Generally, the SR problem, i.e., solving out xt in Eq. (1), is an ill-posed
linear inverse problem that is rather challenging. Thus, accurately

estimating xt demands either sufficient observations yt or proper priors
on xt.

All video SR methods can be divided into two classes: reconstruc-
tion-based and learning-based. Reconstructed-based methods (Baker
and Kanade, 1999; Farsiu et al., 2004; He and Kondi, 2006; Kanaev and
Miller, 2013; Liu and Sun, 2014; Omer and Tanaka, 2009; Rudin et al.,
1992) craft a video SR process to solve the inverse estimation problem
of (1). They usually perform motion compensation at first, then perform
deblurring by estimating blur functions in Dt of (1), and finally recover
details by local correspondences. The hand-crafted video SR process
cannot be applicable for every practical scenario of different properties
and perform not well to some unexpected cases.

In contrast, learning-based methods handle the ill-posed inverse
estimation by learning useful priors for video SR from a large collection
of videos. Typical methods include recently developed deep learning-
based video SR methods (Huang et al., 2015; 2017; Liao et al., 2015a)
and give some examples of non-deep learning approaches. In Liao et al.
(2015a), a funnel shape convolutional neural network (CNN) was de-
veloped to predict HR frames from LR frames that are aligned by optical
flow in advance. It shows superior performance on recovering HR video
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frames captured in still scenes. However, this CNN model suffers from
high computational cost (as it relies on time-consuming regularized
optical flow methods) as well as visual artifacts caused by complex
motions in the video frames. In Huang et al. (2015); 2017), a bidirec-
tional recurrent convolutional network (BRCN) was employed to model
the temporal correlation among multiple frames and further boost the
performance for video SR over previous methods.

However, previous learning-based video SR methods that learn to
predict HR frames directly based on LR frames, suffer from following
limitations. First, these methods concentrate on exploiting between-
frame correlations and does not jointly consider the intra- and inter-
frame correlations that are both critical for the quality of video SR. This
unfavorably limits the capacity of the network for recovering HR frames
with complex contents. Second, the successive input LR frames are
usually highly correlated with the whole signal of the HR frames, but
are not correlated with the high frequency details of these HR images.
In the case where dominant training frames present slow motion, the
learned priors hardly capture hard cases, such as large movements and
shot changes, where neighboring frames distinguished-contributed op-
erations are needed. Third, it is desirable for the joint estimation of
video SR to impose priors on missing high frequency signals. However,
in previous methods, the potential constraints are directly enforced on
the estimated HR frames.

To solve the above-mentioned issues, in this work, we propose a
unified deep neural network architecture to jointly model the intra-
frame and the inter-frame correlation in an end-to-end trainable
manner. Compared with previous (deep) video SR methods (Huang
et al., 2015; 2017; Liao et al., 2015a), our proposed deep network
model does not require explicit computation of optical flow or motion
compensation. In addition, our proposed model unifies the convolu-
tional neural networks (CNNs) and recurrent neural networks (RNNs)
which are known to be powerful in modeling sequential data. Com-
bining the spatial convolutional and temporal recurrent architectures
enables our model to capture spatial and temporal correlations jointly.
Specially, it models spatial and temporal correlations among multiple
video frames jointly. The temporal residues of HR frames are predicted
based on input LR frames along with their temporal residues to further
regularize estimation of the spatial residues.

This architectural choice enables the network to handle the videos
containing complex motions in a moving scene, offering pleasant video
SR results with few artifacts in a time-efficient way.

More concretely, we propose a Spatial Temporal Recurrent Residual
Network (STR-ResNet) for video SR as show in Fig. 1. As aforemen-
tioned, SRT-ResNet models spatial and temporal correlations among
multiple video frames jointly. In STR-ResNet, one basic component is

the spatial residual CNN (SRes-CNN) for single frame SR, which has a
bypass connection for learning the residue between LR and HR feature
maps. SRes-CNN is able to capture the correlation information among
pixels within a single frame, and tries to recover an HR frame based on
its corresponding LR frame through utilizing such correlations. Then,
STR-ResNet stacks multiple SRes-CNNs together with recurrent con-
nections between them. The global recurrent architecture captures the
temporal contextual correlation and recovers the HR frame using both
its corresponding LR frame and its adjacent frames. To better model
inter-frame motions, STR-ResNet takes not only multiple LR frames but
also the residue of these adjacent LR frames as inputs and tries to
predict the temporal residues of HR frames in the penultimate layer. An
HR frame is thus recovered by STR-ResNet by summing up its corre-
sponding LR frame and the predicted spatial residue via the SRes-CNN
component, under the guidance of the predicted temporal residue from
adjacent frames via recurrent residual learning.

By separating the video frames into LR observations and the spatial
residue within a single frame, the low frequency parts of HR frames and
LR frames are untangled. Thus, the models can only focus on describing
high-frequency details. By considering the temporal residues, in both
their prediction path from LR temporal residues to HR temporal re-
sidues and their connection to spatial residues, the proposed STR-
ResNet models both the spatial and temporal correlations jointly and
achieves outstanding video SR performance with relatively low com-
putational complexity.

In summary, we make the following contributions in this work to
solving the challenging video SR problem:

• We propose a novel deep convolutional neural network architecture
specifically for video SR. It follows a joint spatial-temporal residual
learning and aims to predict the HR temporal residues which further
facilitate the predictions of spatial residues and HR frames. By em-
bedding the temporal residue prediction, the proposed architecture
is capable of implicitly modeling the motion context among multiple
video frames for video SR. It provides high-quality video SR results
on benchmark datasets with relatively low computational com-
plexity.

• To the best of our knowledge, the proposed STR-ResNet is the first
research attempt to incorporate the bypass connection in a deep
network to embed the joint spatial-temporal residue prediction and
model temporal correlations in video frame sequences for video
processing. The incorporated residual architecture implicitly models
inter-frame motion context and is demonstrated to be beneficial for
video SR.

• We are also among the first to investigate and unify the spatial
convolutional, temporal recurrent and residual architectures into a
single deep neural network to solve video SR problems. Extensive
experiments on video SR benchmark datasets clearly demonstrate
the contribution of each component to the overall performance.

The rest of this paper is organized as follows. Related work is briefly
reviewed in Section 2. In Section 3, we introduce our spatial-temporal
residual learning. Then, we construct a deep network to model it step-
by-step and present the details of the proposed STR-ResNet, which
models both spatial and temporal redundancies jointly in a unified
network, as well as its constituent SRes-CNN in Section 4. Experimental
results are presented in Section 5. More analysis and discussion on our
method are provided in Section 6. Concluding remarks are given in
Section 7.

2. Related work

Single image super-resolution was first investigated by Irani and
Peleg (1991). By now, it can be divided into two categories: re-
construction-based and learning-based. Reconstruction-based methods
adopt regularizations, such as gradient histogram (Sun et al., 2011),

Fig. 1. The architecture of our proposed spatial-temporal recurrent residual network
(STR-ResNet) for video SR. It takes not only the LR frames but also the differences of these
adjacent LR frames as the input. Some reconstructed features are constrained to predict
the differences of adjacent HR frames in the penultimate layer.
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