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a b s t r a c t 

We present an angular superresolution method for light fields captured with a sparse camera array. Our 

method uses local dictionaries extracted from a sampling mask for upsampling a sparse light field to a 

dense light field by applying compressed sensing reconstruction. We derive optimal sampling masks by 

minimizing the coherence for representative global dictionaries. The desired output perspectives and the 

number of available cameras can be arbitrarily specified. We show that our method yields qualitative 

improvements compared to previous techniques. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction and contributions 

Compared to standard digital photography, light fields offer var- 

ious new options, such as refocussing, perspective changes, and 3D 

filtering as a postprocess. However, capturing them at an adequate 

resolution remains challenging. Popular approaches typically mul- 

tiplex the 4D information onto a single 2D sensor, which results 

either in low spatial resolution, low angular resolution, or both. 

Multiple sensors (e.g., a camera array) can be used to overcome 

the aforementioned issue. However, achieving an adequate reso- 

lution in the angular domain requires a vast number of cameras, 

resulting in high construction costs and complexity. 

In this paper, we present an angular superresolution approach 

for light fields captured with sparse camera arrays. We apply com- 

pressed sensing theory for reconstruction and find optimal sam- 

pling masks for a desired number of cameras and sampling grid 

resolution. In contrast to related work, we avoid the need for depth 

reconstruction, which often fails for non-Lambertian scenes. Com- 

pressed sensing has previously been applied to light fields (e.g., in 

Cao et al., 2014; Marwah et al., 2013 ). One of our contributions is 

the use of online learned local dictionaries extracted directly from 

the scene sampled with an optimized mask instead of using global 

dictionaries that are learned offline from a set of representative 

pre-recorded light fields. Therefore, our method yields superior re- 

construction results compared to related techniques. A second con- 
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tribution is that, in contrast to previous work (including our own 

Schedl et al., 2015 ), the number of samples is not constrained to 

the sampling pattern. Thus, our new approach allows to determine 

sampling masks for an arbitrary number of cameras. We compute 

coherence values for representative global dictionaries that provide 

a formal basis for estimating the reconstruction quality of a given 

sampling pattern. We find sampling masks by minimizing the co- 

herence. Corresponding sampling masks are optimal with respect 

to the representative light fields used for training the global dictio- 

nary. Our method can be applied in situations where a high angu- 

lar light-field resolution is desired, but camera arrays can only be 

constructed with a limited number of cameras (e.g., due to band- 

width limitations or high hardware costs). Our method is not suit- 

able for light-field camera designs that do not support angular sub- 

sampling (e.g., single sensor microlens-array-based cameras). 

The remainder of the paper is organized as follows: After dis- 

cussing related and previous work in Section 2 , we introduce 

mathematical notations and revisit compressive light-field recon- 

struction in Section 3 . Section 4 describes the proposed coherence- 

based quality metric, the sampling pattern optimization with of- 

fline learned global dictionaries, and the reconstruction with on- 

line learned local dictionaries. While Section 5 focusses on param- 

eter choices and implementation details, Section 6 is devoted to 

experimental results and evaluation. We conclude this article in 

Section 7 with a summary of limitations and future work. 
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2. Related work 

Compact light-field cameras often multiplex spatial and angu- 

lar information on a single 2D sensor and thus suffer from either 

low spatial resolution, low angular resolution, or both. As a conse- 

quence spatial super-resolution methods for light fields have been 

proposed ( Bishop et al., 2009; Boominathan et al., 2014; Georgiev 

and Lumsdaine, 2009 ). For camera arrays with multiple image sen- 

sors, spatial resolution is usually not an issue. However, high an- 

gular resolution requires a vast number of cameras, incurring high 

costs and complexity. 

Angular super-resolution methods reduce the number of re- 

quired cameras by reconstructing missing camera perspectives. Up- 

sampling is applied to avoid undersampling artefacts and to enable 

smooth view transitions. For Lambertian scenes, depth reconstruc- 

tion and subsequent view interpolation can be applied ( Di et al., 

2012; Kalantari et al., 2016; Kim et al., 2013; Mitra and Veeraragha- 

van, 2012; Pujades et al., 2014; Wanner and Goldluecke, 2014; 

Zhang et al., 2015 ). 

Depth reconstruction works well for adequately textured 

isotropic content, but can fail for more realistic scenes with 

non-Lambertian, anisotropic, or completely uniform objects. Non- 

Lambertian content cannot be described sufficiently in 3D but re- 

quires additional information, as provided in 4D light-field record- 

ings. Thus, we compare our approach to upsampling methods that 

do not rely on explicit depth reconstruction. 

In Levin and Durand (2010) , an approach called linear view syn- 

thesis was presented that can calculate novel views from a focal 

stack without depth information. However, it is limited mainly to 

Lambertian scenes, since a focal stack covers only a 3D subset of a 

full 4D light field. The same restriction applies to the method pre- 

sented in Kubota et al. (2004) , where a focal stack is computed for 

each new perspective, and an all-in-focus image is then extracted 

from the focal stack. 

The approach described in Vagharshakyan et al. (2017) uses a 

shearlet transform to reconstruct sub-sampled epipolar-plane im- 

ages of a light field, which does not require explicit depth recon- 

struction. However, reconstruction is still based on a Lambertian 

scene model; the authors discussed possible extensions to non- 

Lambertian scenes only as part of future work. Furthermore, their 

sampling mask is regular, while we optimize our mask and allow 

arbitrary irregular patterns. 

In Shi et al. (2014) , a method specifically targeted at non- 

Lambertian scenes was introduced which uses sparsity in the con- 

tinuous Fourier domain to reconstruct light fields from a small 

number of 1D viewpoint trajectories in a camera array. Although 

the sampling mask is sparse, the method requires very specific 

sampling patterns with a fixed number of cameras for capturing. 

In contrast, we describe how to find an optimal sampling pattern 

for an arbitrary number of cameras and also show that we achieve 

higher reconstruction quality with the same number of cameras. 

Recently, learning-based methods for light-field superresolution 

have been presented ( Flynn et al., 2016; Kalantari et al., 2016; Yoon 

et al., 2015 ). The approach introduced in Yoon et al. (2015) , for ex- 

ample, trains convolutional neural networks to upsample a light 

field in the spatial and angular domains. However, it requires a rel- 

atively dense and regularly sampled input, while our method sup- 

ports sparse and irregular samples. 

Methods in Flynn et al. (2016) and Kalantari et al. (2016) use 

sparse input samples but rely on depth layers or depth recon- 

struction. In Kalantari et al. (2016) two convolutional neural net- 

works are applied—one for disparity estimation, and one for view 

interpolation. Therefore, these methods are limited to Lamber- 

tian scenes. Furthermore, in comparison to our approach, these 

learning-based techniques do not optimize sampling masks, but 

rely on manually defined sampling patterns. 

The aforementioned methods can upsample sparse light fields 

but require regular sampling masks. Compressed sensing ap- 

proaches use irregular sampling masks to encode additional in- 

formation in a low-resolution recording. The methods presented 

in Marwah et al. (2013) , Babacan et al. (2012) , Ashok and Neifeld 

(2010) , Mitra et al. (2014) , Chen and Chau (2016) , Miandji et al. 

(2015) , Kamal et al. (2016) and YAO et al. (2014) place sam- 

pling masks in the optical path of standard cameras or com- 

pact microlens-based plenoptic cameras. Reconstructions of full 

light fields from the recordings are computed with sparse bases 

(e.g., DCT, trained global dictionaries, or Gaussian mixture mod- 

els) and sparsity-aware optimization methods. We also use com- 

pressed sensing theory for reconstruction, but optimize the binary 

angular sampling pattern of a camera array instead of using (of- 

ten continuous) optical sampling masks (which affect the spatial 

and angular domains). Compressed sensing in the spatial domain 

for camera arrays was presented in Kamal et al. (2012) . Lamber- 

tian Gaussian mixture models, as used in Mitra and Veeraraghavan 

(2012) and Mitra et al. (2014) , ignore anisotropic effects and trans- 

parencies. Corresponding methods require disparity estimations as 

an aditional preprocessing step. While it might be possible to re- 

formulate the approach proposed in Mitra et al. (2014) to address 

the problem of choosing optimal camera sample locations, it is still 

limited to Lambertian scenes. 

The methods in Cao et al. (2014) and Schedl et al. (2015) are the 

closest to our approach. Similarly, these techniques upsample light 

fields captured with a sparse camera array while avoiding depth 

information. Like the approach in Cao et al. (2014) , our method 

uses compressed sensing techniques for reconstruction. However, 

we extended this idea by using local dictionaries extracted from a 

sub-sampled light field for reconstruction. Furthermore, we present 

methods for computing optimal sampling masks for an arbitrary 

number of cameras and sampling grid sizes. 

Our previous method Schedl et al. (2015) already presented 

the idea of using higher-resolution guidance areas to support up- 

sampling. In this article, we improved the reconstruction quality 

by using compressed sensing. Additionally, we present a method 

for computing optimal sampling configurations based on coherence 

values in a global dictionary and for an arbitrary number of cam- 

eras. In Schedl et al. (2015) we applied (empirically found) rules 

for estimating sampling masks that supported only specific num- 

bers of cameras. 

3. Mathematical notation and sparse light-field reconstruction 

In this section, we introduce the mathematical notations that 

we will use throughout this article and revisit sparse light-field re- 

construction with global dictionaries (e.g., Marwah et al., 2013 ). 

We consider light fields captured with camera arrays and de- 

scribed by a regular two-plane parametrization, as discussed in 

Levoy and Hanrahan (1996) . Thus, rays are parametrized by their 

intersections with two parallel planes: the camera plane UV (rep- 

resenting the angular domain), where the cameras are located, and 

the common image plane ST (representing the spatial domain), 

placed at a fixed distance from UV towards the objects to be cap- 

tured. The indices u, v describe different camera positions on UV , 

and s, t address pixels in the captured perspective images I u, v . We 

assume the light field to be regularly discretized and describe the 

ray intensities with the 4D matrix L (of size S × T × U × V ) or its 

vectorized 1D counterpart l = v ec(L ) = [ i 0 , 0 , i 0 , 1 , . . . , i U,V ] 
� ), which 

contains a sequence of vectorized 1D versions of the captured per- 

spectives ( i u, v = v ec(I u, v ) ). 

The goal of upsampling is to reconstruct a full light field l from 

its sub-sampled counterpart l ′ = �l , which only contains a subsec- 

tion of all captured perspective images I u, v described by the sam- 

pling matrix �. Since the size of l ′ is much lower than that of l , 
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